Quadratic spline collocation method for the time fractional subdiffusion equation

In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical exam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2016-03, Vol.276, p.252-265
Hauptverfasser: Luo, Wei-Hua, Huang, Ting-Zhu, Wu, Guo-Cheng, Gu, Xian-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue
container_start_page 252
container_title Applied mathematics and computation
container_volume 276
creator Luo, Wei-Hua
Huang, Ting-Zhu
Wu, Guo-Cheng
Gu, Xian-Ming
description In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical examples demonstrate the proposed technique can enjoy the global error bound with O(τ3+h3) under the L∞ norm provided that the solution v(x, t) has four-order continual derivative with respects to x and t, and it can achieve the accuracy of O(τ4+h4) at collocation points, where τ, h are the step sizes in time and space, respectively.
doi_str_mv 10.1016/j.amc.2015.12.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793238214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300315300084</els_id><sourcerecordid>1793238214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-a5fd35c66165c83a07ad951057f7dedbc441101624a4d087dda6882299e2852f3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHdZumnNo0laXMngCwZkQNchk9wwGdpmJmkF_72t49rVhXPPdy_nIHRLSUkJlff70nS2ZISKkrKSMHKGFrRWvBCyas7RgpBGFpwQfomuct4TQpSk1QJtNqNxyQzB4nxoQw_YxraNdlJijzsYdtFhHxMedoCH0AH2ydh5aVqcx60L3o959sJx_IWu0YU3bYabv7lEn89PH6vXYv3-8rZ6XBeWKz4URnjHhZWSSmFrbogyrhGUCOWVA7e1VUXnZKwylSO1cs7IumasaYDVgnm-RHenu4cUjyPkQXchW2hb00Mcs6aq4YzXjFaTlZ6sNsWcE3h9SKEz6VtToucneq-n-vRcn6ZMT_VNzMOJgSnDV4Cksw3QW3AhgR20i-Ef-ge6wXhS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793238214</pqid></control><display><type>article</type><title>Quadratic spline collocation method for the time fractional subdiffusion equation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Luo, Wei-Hua ; Huang, Ting-Zhu ; Wu, Guo-Cheng ; Gu, Xian-Ming</creator><creatorcontrib>Luo, Wei-Hua ; Huang, Ting-Zhu ; Wu, Guo-Cheng ; Gu, Xian-Ming</creatorcontrib><description>In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical examples demonstrate the proposed technique can enjoy the global error bound with O(τ3+h3) under the L∞ norm provided that the solution v(x, t) has four-order continual derivative with respects to x and t, and it can achieve the accuracy of O(τ4+h4) at collocation points, where τ, h are the step sizes in time and space, respectively.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2015.12.020</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Collocation ; Derivatives ; Error analysis ; Fractional subdiffusion equation ; Linear systems ; Mathematical analysis ; Mathematical models ; Norms ; Optimal convergence ; Quadratic spline collocation ; Splines</subject><ispartof>Applied mathematics and computation, 2016-03, Vol.276, p.252-265</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-a5fd35c66165c83a07ad951057f7dedbc441101624a4d087dda6882299e2852f3</citedby><cites>FETCH-LOGICAL-c373t-a5fd35c66165c83a07ad951057f7dedbc441101624a4d087dda6882299e2852f3</cites><orcidid>0000-0001-7766-230X ; 0000-0001-7895-2050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2015.12.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids></links><search><creatorcontrib>Luo, Wei-Hua</creatorcontrib><creatorcontrib>Huang, Ting-Zhu</creatorcontrib><creatorcontrib>Wu, Guo-Cheng</creatorcontrib><creatorcontrib>Gu, Xian-Ming</creatorcontrib><title>Quadratic spline collocation method for the time fractional subdiffusion equation</title><title>Applied mathematics and computation</title><description>In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical examples demonstrate the proposed technique can enjoy the global error bound with O(τ3+h3) under the L∞ norm provided that the solution v(x, t) has four-order continual derivative with respects to x and t, and it can achieve the accuracy of O(τ4+h4) at collocation points, where τ, h are the step sizes in time and space, respectively.</description><subject>Collocation</subject><subject>Derivatives</subject><subject>Error analysis</subject><subject>Fractional subdiffusion equation</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Norms</subject><subject>Optimal convergence</subject><subject>Quadratic spline collocation</subject><subject>Splines</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHdZumnNo0laXMngCwZkQNchk9wwGdpmJmkF_72t49rVhXPPdy_nIHRLSUkJlff70nS2ZISKkrKSMHKGFrRWvBCyas7RgpBGFpwQfomuct4TQpSk1QJtNqNxyQzB4nxoQw_YxraNdlJijzsYdtFhHxMedoCH0AH2ydh5aVqcx60L3o959sJx_IWu0YU3bYabv7lEn89PH6vXYv3-8rZ6XBeWKz4URnjHhZWSSmFrbogyrhGUCOWVA7e1VUXnZKwylSO1cs7IumasaYDVgnm-RHenu4cUjyPkQXchW2hb00Mcs6aq4YzXjFaTlZ6sNsWcE3h9SKEz6VtToucneq-n-vRcn6ZMT_VNzMOJgSnDV4Cksw3QW3AhgR20i-Ef-ge6wXhS</recordid><startdate>20160305</startdate><enddate>20160305</enddate><creator>Luo, Wei-Hua</creator><creator>Huang, Ting-Zhu</creator><creator>Wu, Guo-Cheng</creator><creator>Gu, Xian-Ming</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7766-230X</orcidid><orcidid>https://orcid.org/0000-0001-7895-2050</orcidid></search><sort><creationdate>20160305</creationdate><title>Quadratic spline collocation method for the time fractional subdiffusion equation</title><author>Luo, Wei-Hua ; Huang, Ting-Zhu ; Wu, Guo-Cheng ; Gu, Xian-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-a5fd35c66165c83a07ad951057f7dedbc441101624a4d087dda6882299e2852f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Collocation</topic><topic>Derivatives</topic><topic>Error analysis</topic><topic>Fractional subdiffusion equation</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Norms</topic><topic>Optimal convergence</topic><topic>Quadratic spline collocation</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Wei-Hua</creatorcontrib><creatorcontrib>Huang, Ting-Zhu</creatorcontrib><creatorcontrib>Wu, Guo-Cheng</creatorcontrib><creatorcontrib>Gu, Xian-Ming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Wei-Hua</au><au>Huang, Ting-Zhu</au><au>Wu, Guo-Cheng</au><au>Gu, Xian-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic spline collocation method for the time fractional subdiffusion equation</atitle><jtitle>Applied mathematics and computation</jtitle><date>2016-03-05</date><risdate>2016</risdate><volume>276</volume><spage>252</spage><epage>265</epage><pages>252-265</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical examples demonstrate the proposed technique can enjoy the global error bound with O(τ3+h3) under the L∞ norm provided that the solution v(x, t) has four-order continual derivative with respects to x and t, and it can achieve the accuracy of O(τ4+h4) at collocation points, where τ, h are the step sizes in time and space, respectively.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2015.12.020</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7766-230X</orcidid><orcidid>https://orcid.org/0000-0001-7895-2050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2016-03, Vol.276, p.252-265
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1793238214
source ScienceDirect Journals (5 years ago - present)
subjects Collocation
Derivatives
Error analysis
Fractional subdiffusion equation
Linear systems
Mathematical analysis
Mathematical models
Norms
Optimal convergence
Quadratic spline collocation
Splines
title Quadratic spline collocation method for the time fractional subdiffusion equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20spline%20collocation%20method%20for%20the%20time%20fractional%20subdiffusion%20equation&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Luo,%20Wei-Hua&rft.date=2016-03-05&rft.volume=276&rft.spage=252&rft.epage=265&rft.pages=252-265&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2015.12.020&rft_dat=%3Cproquest_cross%3E1793238214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793238214&rft_id=info:pmid/&rft_els_id=S0096300315300084&rfr_iscdi=true