Quadratic spline collocation method for the time fractional subdiffusion equation
In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical exam...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2016-03, Vol.276, p.252-265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | |
container_start_page | 252 |
container_title | Applied mathematics and computation |
container_volume | 276 |
creator | Luo, Wei-Hua Huang, Ting-Zhu Wu, Guo-Cheng Gu, Xian-Ming |
description | In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical examples demonstrate the proposed technique can enjoy the global error bound with O(τ3+h3) under the L∞ norm provided that the solution v(x, t) has four-order continual derivative with respects to x and t, and it can achieve the accuracy of O(τ4+h4) at collocation points, where τ, h are the step sizes in time and space, respectively. |
doi_str_mv | 10.1016/j.amc.2015.12.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793238214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300315300084</els_id><sourcerecordid>1793238214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-a5fd35c66165c83a07ad951057f7dedbc441101624a4d087dda6882299e2852f3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHdZumnNo0laXMngCwZkQNchk9wwGdpmJmkF_72t49rVhXPPdy_nIHRLSUkJlff70nS2ZISKkrKSMHKGFrRWvBCyas7RgpBGFpwQfomuct4TQpSk1QJtNqNxyQzB4nxoQw_YxraNdlJijzsYdtFhHxMedoCH0AH2ydh5aVqcx60L3o959sJx_IWu0YU3bYabv7lEn89PH6vXYv3-8rZ6XBeWKz4URnjHhZWSSmFrbogyrhGUCOWVA7e1VUXnZKwylSO1cs7IumasaYDVgnm-RHenu4cUjyPkQXchW2hb00Mcs6aq4YzXjFaTlZ6sNsWcE3h9SKEz6VtToucneq-n-vRcn6ZMT_VNzMOJgSnDV4Cksw3QW3AhgR20i-Ef-ge6wXhS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793238214</pqid></control><display><type>article</type><title>Quadratic spline collocation method for the time fractional subdiffusion equation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Luo, Wei-Hua ; Huang, Ting-Zhu ; Wu, Guo-Cheng ; Gu, Xian-Ming</creator><creatorcontrib>Luo, Wei-Hua ; Huang, Ting-Zhu ; Wu, Guo-Cheng ; Gu, Xian-Ming</creatorcontrib><description>In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical examples demonstrate the proposed technique can enjoy the global error bound with O(τ3+h3) under the L∞ norm provided that the solution v(x, t) has four-order continual derivative with respects to x and t, and it can achieve the accuracy of O(τ4+h4) at collocation points, where τ, h are the step sizes in time and space, respectively.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2015.12.020</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Collocation ; Derivatives ; Error analysis ; Fractional subdiffusion equation ; Linear systems ; Mathematical analysis ; Mathematical models ; Norms ; Optimal convergence ; Quadratic spline collocation ; Splines</subject><ispartof>Applied mathematics and computation, 2016-03, Vol.276, p.252-265</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-a5fd35c66165c83a07ad951057f7dedbc441101624a4d087dda6882299e2852f3</citedby><cites>FETCH-LOGICAL-c373t-a5fd35c66165c83a07ad951057f7dedbc441101624a4d087dda6882299e2852f3</cites><orcidid>0000-0001-7766-230X ; 0000-0001-7895-2050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2015.12.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids></links><search><creatorcontrib>Luo, Wei-Hua</creatorcontrib><creatorcontrib>Huang, Ting-Zhu</creatorcontrib><creatorcontrib>Wu, Guo-Cheng</creatorcontrib><creatorcontrib>Gu, Xian-Ming</creatorcontrib><title>Quadratic spline collocation method for the time fractional subdiffusion equation</title><title>Applied mathematics and computation</title><description>In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical examples demonstrate the proposed technique can enjoy the global error bound with O(τ3+h3) under the L∞ norm provided that the solution v(x, t) has four-order continual derivative with respects to x and t, and it can achieve the accuracy of O(τ4+h4) at collocation points, where τ, h are the step sizes in time and space, respectively.</description><subject>Collocation</subject><subject>Derivatives</subject><subject>Error analysis</subject><subject>Fractional subdiffusion equation</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Norms</subject><subject>Optimal convergence</subject><subject>Quadratic spline collocation</subject><subject>Splines</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHdZumnNo0laXMngCwZkQNchk9wwGdpmJmkF_72t49rVhXPPdy_nIHRLSUkJlff70nS2ZISKkrKSMHKGFrRWvBCyas7RgpBGFpwQfomuct4TQpSk1QJtNqNxyQzB4nxoQw_YxraNdlJijzsYdtFhHxMedoCH0AH2ydh5aVqcx60L3o959sJx_IWu0YU3bYabv7lEn89PH6vXYv3-8rZ6XBeWKz4URnjHhZWSSmFrbogyrhGUCOWVA7e1VUXnZKwylSO1cs7IumasaYDVgnm-RHenu4cUjyPkQXchW2hb00Mcs6aq4YzXjFaTlZ6sNsWcE3h9SKEz6VtToucneq-n-vRcn6ZMT_VNzMOJgSnDV4Cksw3QW3AhgR20i-Ef-ge6wXhS</recordid><startdate>20160305</startdate><enddate>20160305</enddate><creator>Luo, Wei-Hua</creator><creator>Huang, Ting-Zhu</creator><creator>Wu, Guo-Cheng</creator><creator>Gu, Xian-Ming</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7766-230X</orcidid><orcidid>https://orcid.org/0000-0001-7895-2050</orcidid></search><sort><creationdate>20160305</creationdate><title>Quadratic spline collocation method for the time fractional subdiffusion equation</title><author>Luo, Wei-Hua ; Huang, Ting-Zhu ; Wu, Guo-Cheng ; Gu, Xian-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-a5fd35c66165c83a07ad951057f7dedbc441101624a4d087dda6882299e2852f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Collocation</topic><topic>Derivatives</topic><topic>Error analysis</topic><topic>Fractional subdiffusion equation</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Norms</topic><topic>Optimal convergence</topic><topic>Quadratic spline collocation</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Wei-Hua</creatorcontrib><creatorcontrib>Huang, Ting-Zhu</creatorcontrib><creatorcontrib>Wu, Guo-Cheng</creatorcontrib><creatorcontrib>Gu, Xian-Ming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Wei-Hua</au><au>Huang, Ting-Zhu</au><au>Wu, Guo-Cheng</au><au>Gu, Xian-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic spline collocation method for the time fractional subdiffusion equation</atitle><jtitle>Applied mathematics and computation</jtitle><date>2016-03-05</date><risdate>2016</risdate><volume>276</volume><spage>252</spage><epage>265</epage><pages>252-265</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical examples demonstrate the proposed technique can enjoy the global error bound with O(τ3+h3) under the L∞ norm provided that the solution v(x, t) has four-order continual derivative with respects to x and t, and it can achieve the accuracy of O(τ4+h4) at collocation points, where τ, h are the step sizes in time and space, respectively.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2015.12.020</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7766-230X</orcidid><orcidid>https://orcid.org/0000-0001-7895-2050</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2016-03, Vol.276, p.252-265 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793238214 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Collocation Derivatives Error analysis Fractional subdiffusion equation Linear systems Mathematical analysis Mathematical models Norms Optimal convergence Quadratic spline collocation Splines |
title | Quadratic spline collocation method for the time fractional subdiffusion equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20spline%20collocation%20method%20for%20the%20time%20fractional%20subdiffusion%20equation&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Luo,%20Wei-Hua&rft.date=2016-03-05&rft.volume=276&rft.spage=252&rft.epage=265&rft.pages=252-265&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2015.12.020&rft_dat=%3Cproquest_cross%3E1793238214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793238214&rft_id=info:pmid/&rft_els_id=S0096300315300084&rfr_iscdi=true |