Quadratic spline collocation method for the time fractional subdiffusion equation
In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical exam...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2016-03, Vol.276, p.252-265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, exploiting the quadratic spline collocation (QSC) method, we numerically solve the time fractional subdiffusion equation with Dirichelt boundary value conditions. The coefficient matrix of the discretized linear system is investigated in detail. Theoretical analyses and numerical examples demonstrate the proposed technique can enjoy the global error bound with O(τ3+h3) under the L∞ norm provided that the solution v(x, t) has four-order continual derivative with respects to x and t, and it can achieve the accuracy of O(τ4+h4) at collocation points, where τ, h are the step sizes in time and space, respectively. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2015.12.020 |