Light-Regulated Release of Entrapped Drugs from Photoresponsive Gold Nanoparticles

Release of a payload in a spatiotemporal fashion has a substantial impact on increasing therapeutic efficacy. In this work, a novel monolayer of gold nanoparticles (AuNPs) featuring light-responsive ligands was investigated as a potential drug carrier whose drug release can be triggered by UV light....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2016-01, Vol.2016 (2016), p.1-7
Hauptverfasser: Chompoosor, Apiwat, Moosophon, Panawan, Suchaichit, Nattawut, Sreejivungsa, Kaniknun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Release of a payload in a spatiotemporal fashion has a substantial impact on increasing therapeutic efficacy. In this work, a novel monolayer of gold nanoparticles (AuNPs) featuring light-responsive ligands was investigated as a potential drug carrier whose drug release can be triggered by UV light. Hydrophobic molecules were noncovalently entrapped in the compartments of its monolayers. Once irradiated with UV light, the dinitrobenzyl linker was cleaved, leading to release of the entrapped agent. AuNPs were characterized using UV spectrophotometry, TEM, and a zetasizer. A naturally occurring compound extracted from Goniothalamus elegans Ast was chosen as a hydrophobic model drug. Entrapment and release of dye were monitored using fluorimetry. The percent encapsulation of dye was of 13.53%. Entrapped dye can be released upon UV irradiation and can be regulated by changing irradiation time. Up to 83.95±2.2% entrapped dye can be released after irradiation for 20 minutes. In the absence of UV light, dye release was only 19.75%. For comparison purposes, AuNPs having no dinitrobenzyl groups showed a minimal release of 12.23% and 11.69% with and without UV light, respectively. This demonstrated an alternative strategy to encapsulate drugs using a noncovalent approach followed by their controlled release upon UV irradiation.
ISSN:1687-4110
1687-4129
DOI:10.1155/2016/4964693