Convergence of Lax–Friedrichs and Godunov schemes for a nonstrictly hyperbolic system of conservation laws arising in oil recovery

This paper is devoted to the compactness framework and the convergence theorem for the Lax–Friedrichs and Godunov schemes applied to a 2 × 2 system of non-strictly hyperbolic nonlinear conservation laws that arises from mathematical models for oil recovery. The presence of a degeneracy in the hyperb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continuum mechanics and thermodynamics 2016-03, Vol.28 (1-2), p.331-349
Hauptverfasser: Djoufedie, George Noel, Felaco, Elisabetta, Rubino, Bruno, Sampalmieri, Rosella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the compactness framework and the convergence theorem for the Lax–Friedrichs and Godunov schemes applied to a 2 × 2 system of non-strictly hyperbolic nonlinear conservation laws that arises from mathematical models for oil recovery. The presence of a degeneracy in the hyperbolicity of the system requires a careful analysis of the entropy functions, whose regularity is necessary to obtain the result. For this purpose, it is necessary to combine the classical techniques referring to a singular Euler–Poisson–Darboux equation with the compensated compactness method.
ISSN:0935-1175
1432-0959
DOI:10.1007/s00161-015-0432-7