Convergence of Lax–Friedrichs and Godunov schemes for a nonstrictly hyperbolic system of conservation laws arising in oil recovery
This paper is devoted to the compactness framework and the convergence theorem for the Lax–Friedrichs and Godunov schemes applied to a 2 × 2 system of non-strictly hyperbolic nonlinear conservation laws that arises from mathematical models for oil recovery. The presence of a degeneracy in the hyperb...
Gespeichert in:
Veröffentlicht in: | Continuum mechanics and thermodynamics 2016-03, Vol.28 (1-2), p.331-349 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to the compactness framework and the convergence theorem for the Lax–Friedrichs and Godunov schemes applied to a
2
×
2
system of non-strictly hyperbolic nonlinear conservation laws that arises from mathematical models for oil recovery. The presence of a degeneracy in the hyperbolicity of the system requires a careful analysis of the entropy functions, whose regularity is necessary to obtain the result. For this purpose, it is necessary to combine the classical techniques referring to a singular Euler–Poisson–Darboux equation with the compensated compactness method. |
---|---|
ISSN: | 0935-1175 1432-0959 |
DOI: | 10.1007/s00161-015-0432-7 |