Positivity of Toeplitz Operators on Harmonic Bergman Space

In this paper, we study positive Toeplitz operators on the harmonic Bergman space via their Berezin transforms. We consider the Toeplitz operators with continuous harmonic symbols on the closed disk and show that the Toeplitz operator is positive if and only if its Berezin transform is nonnegative o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2016-02, Vol.32 (2), p.175-186
Hauptverfasser: Shu, Yong Lu, Zhao, Xian Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study positive Toeplitz operators on the harmonic Bergman space via their Berezin transforms. We consider the Toeplitz operators with continuous harmonic symbols on the closed disk and show that the Toeplitz operator is positive if and only if its Berezin transform is nonnegative on the disk. On the other hand, we construct a function such that the Toeplitz operator with this function as the symbol is not positive but its Berezin transform is positive on the disk. We also consider the harmonic Bergman space on the upper half plane and prove that in this case the positive Toeplitz operators with continuous integrable harmonic symbols must be the zero operator.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-016-5138-7