QUASI-SYMMETRIC FUNCTIONS AND MOD p MULTIPLE HARMONIC SUMS
We present a number of results about (finite) multiple harmonic sums modulo a prime, which provide interesting parallels to known results about multiple zeta values (i.e. infinite multiple harmonic series). In particular, we prove a ‘duality' result for mod p harmonic sums similar to (but disti...
Gespeichert in:
Veröffentlicht in: | Kyushu Journal of Mathematics 2015, Vol.69(2), pp.345-366 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a number of results about (finite) multiple harmonic sums modulo a prime, which provide interesting parallels to known results about multiple zeta values (i.e. infinite multiple harmonic series). In particular, we prove a ‘duality' result for mod p harmonic sums similar to (but distinct from) that for multiple zeta values. We also exploit the Hopf algebra structure of the quasi-symmetric functions to perform calculations with multiple harmonic sums mod p, and obtain, for each weight n through nine, a set of generators for the space of weight-n multiple harmonic sums mod p. When combined with recent work, the results of this paper offer significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is the nth Padovan number (OEIS sequence A000931). |
---|---|
ISSN: | 1340-6116 1883-2032 |
DOI: | 10.2206/kyushujm.69.345 |