QUASI-SYMMETRIC FUNCTIONS AND MOD p MULTIPLE HARMONIC SUMS

We present a number of results about (finite) multiple harmonic sums modulo a prime, which provide interesting parallels to known results about multiple zeta values (i.e. infinite multiple harmonic series). In particular, we prove a ‘duality' result for mod p harmonic sums similar to (but disti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyushu Journal of Mathematics 2015, Vol.69(2), pp.345-366
1. Verfasser: HOFFMAN, Michael E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a number of results about (finite) multiple harmonic sums modulo a prime, which provide interesting parallels to known results about multiple zeta values (i.e. infinite multiple harmonic series). In particular, we prove a ‘duality' result for mod p harmonic sums similar to (but distinct from) that for multiple zeta values. We also exploit the Hopf algebra structure of the quasi-symmetric functions to perform calculations with multiple harmonic sums mod p, and obtain, for each weight n through nine, a set of generators for the space of weight-n multiple harmonic sums mod p. When combined with recent work, the results of this paper offer significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is the nth Padovan number (OEIS sequence A000931).
ISSN:1340-6116
1883-2032
DOI:10.2206/kyushujm.69.345