Intrinsic Lightweight Steel-Composite Hybrids for Structural Components
Multi-Material Design has been identified to be an important enabler for lightweight structures, especially with regards to the goals for the large-scale implementation of e-mobility concepts. A novel 3D-Hybrid technology has been developed to combine the advantages of metal and fibre-reinforced the...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2015-07, Vol.825-826, p.401-408, Article 401 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi-Material Design has been identified to be an important enabler for lightweight structures, especially with regards to the goals for the large-scale implementation of e-mobility concepts. A novel 3D-Hybrid technology has been developed to combine the advantages of metal and fibre-reinforced thermoplastics in one structural part. This leads to significant weight reduction in combination with an increase in functionality. Additionally, the amount of single parts can be reduced; these factors combined make the technology competitive with conventional steel-sheet design. Investigations on basic profiles showed the feasibility of the technology in single stage production processes and proved the superior performance of the structure compared to conventional design. Finally, a B-pillar demonstration structure was produced in a highly automated process and investigated in side-impact related component tests. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.825-826.401 |