Fast Eigensolver for Plasmonic Metasurfaces

Finding the wavevectors (eigenvalues) and wavefronts (eigenvectors) in nanostructured metasurfaces is cast as a problem of finding the complex roots of a non-linear equation. A new algorithm is introduced for solving this problem; example eigenvalues are obtained and compared against the results fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical materials express 2014-02, Vol.4 (2), p.288-299
Hauptverfasser: Korotkevich, Alexander O., Ni, Xingjie, Kildishev, Alexander V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 2
container_start_page 288
container_title Optical materials express
container_volume 4
creator Korotkevich, Alexander O.
Ni, Xingjie
Kildishev, Alexander V.
description Finding the wavevectors (eigenvalues) and wavefronts (eigenvectors) in nanostructured metasurfaces is cast as a problem of finding the complex roots of a non-linear equation. A new algorithm is introduced for solving this problem; example eigenvalues are obtained and compared against the results from a popular, yet much more computationally expensive method built on a matrix eigenvalue problem. In contrast to the conventional solvers, the proposed method always returns a set of 'exact' individual eigenvalues. First, by using the Lehmer-Schur algorithm, we isolate individual complex roots from others, then use a zero-polishing method applied at the very final stage of ultimate eigenvalue localization. Exceptional computational performance, scalability, and accuracy are demonstrated.
doi_str_mv 10.1364/OME.4.000288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793226164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793226164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-e4f4c20a387cc11c7f0dc201d1fbd57669aeaef7effedcabe15550ab96ceee163</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsNTu_AFZCpo430mWUlIVWupC18Nk8kYiSabOSwT_vZG4cHXvhcNdHEKuGc2Y0PL-eKgymVFKeVGckRVnqkxFKej5v35JNogfM0OV5gXnK3K7szgmVfsOA4buC2LiQ0xeOot9GFqXHGC0OEVvHeAVufC2Q9j85Zq87arX7VO6Pz4-bx_2qRNUjylILx2nVhS5c4y53NNm3qxhvm5UrnVpwYLPwXtonK2BKaWorUvtAIBpsSY3y-8phs8JcDR9iw66zg4QJjQsLwXnmmk5o3cL6mJAjODNKba9jd-GUfOrxcxajDSLFvEDKkJVQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793226164</pqid></control><display><type>article</type><title>Fast Eigensolver for Plasmonic Metasurfaces</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Korotkevich, Alexander O. ; Ni, Xingjie ; Kildishev, Alexander V.</creator><creatorcontrib>Korotkevich, Alexander O. ; Ni, Xingjie ; Kildishev, Alexander V.</creatorcontrib><description>Finding the wavevectors (eigenvalues) and wavefronts (eigenvectors) in nanostructured metasurfaces is cast as a problem of finding the complex roots of a non-linear equation. A new algorithm is introduced for solving this problem; example eigenvalues are obtained and compared against the results from a popular, yet much more computationally expensive method built on a matrix eigenvalue problem. In contrast to the conventional solvers, the proposed method always returns a set of 'exact' individual eigenvalues. First, by using the Lehmer-Schur algorithm, we isolate individual complex roots from others, then use a zero-polishing method applied at the very final stage of ultimate eigenvalue localization. Exceptional computational performance, scalability, and accuracy are demonstrated.</description><identifier>ISSN: 2159-3930</identifier><identifier>EISSN: 2159-3930</identifier><identifier>DOI: 10.1364/OME.4.000288</identifier><language>eng</language><subject>Algorithms ; Computation ; Eigenvalues ; Mathematical analysis ; Plasmonics ; Roots ; Solvers ; Wave fronts</subject><ispartof>Optical materials express, 2014-02, Vol.4 (2), p.288-299</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-e4f4c20a387cc11c7f0dc201d1fbd57669aeaef7effedcabe15550ab96ceee163</citedby><cites>FETCH-LOGICAL-c306t-e4f4c20a387cc11c7f0dc201d1fbd57669aeaef7effedcabe15550ab96ceee163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Korotkevich, Alexander O.</creatorcontrib><creatorcontrib>Ni, Xingjie</creatorcontrib><creatorcontrib>Kildishev, Alexander V.</creatorcontrib><title>Fast Eigensolver for Plasmonic Metasurfaces</title><title>Optical materials express</title><description>Finding the wavevectors (eigenvalues) and wavefronts (eigenvectors) in nanostructured metasurfaces is cast as a problem of finding the complex roots of a non-linear equation. A new algorithm is introduced for solving this problem; example eigenvalues are obtained and compared against the results from a popular, yet much more computationally expensive method built on a matrix eigenvalue problem. In contrast to the conventional solvers, the proposed method always returns a set of 'exact' individual eigenvalues. First, by using the Lehmer-Schur algorithm, we isolate individual complex roots from others, then use a zero-polishing method applied at the very final stage of ultimate eigenvalue localization. Exceptional computational performance, scalability, and accuracy are demonstrated.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Plasmonics</subject><subject>Roots</subject><subject>Solvers</subject><subject>Wave fronts</subject><issn>2159-3930</issn><issn>2159-3930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AURQdRsNTu_AFZCpo430mWUlIVWupC18Nk8kYiSabOSwT_vZG4cHXvhcNdHEKuGc2Y0PL-eKgymVFKeVGckRVnqkxFKej5v35JNogfM0OV5gXnK3K7szgmVfsOA4buC2LiQ0xeOot9GFqXHGC0OEVvHeAVufC2Q9j85Zq87arX7VO6Pz4-bx_2qRNUjylILx2nVhS5c4y53NNm3qxhvm5UrnVpwYLPwXtonK2BKaWorUvtAIBpsSY3y-8phs8JcDR9iw66zg4QJjQsLwXnmmk5o3cL6mJAjODNKba9jd-GUfOrxcxajDSLFvEDKkJVQA</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Korotkevich, Alexander O.</creator><creator>Ni, Xingjie</creator><creator>Kildishev, Alexander V.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140201</creationdate><title>Fast Eigensolver for Plasmonic Metasurfaces</title><author>Korotkevich, Alexander O. ; Ni, Xingjie ; Kildishev, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-e4f4c20a387cc11c7f0dc201d1fbd57669aeaef7effedcabe15550ab96ceee163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Plasmonics</topic><topic>Roots</topic><topic>Solvers</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korotkevich, Alexander O.</creatorcontrib><creatorcontrib>Ni, Xingjie</creatorcontrib><creatorcontrib>Kildishev, Alexander V.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optical materials express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korotkevich, Alexander O.</au><au>Ni, Xingjie</au><au>Kildishev, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Eigensolver for Plasmonic Metasurfaces</atitle><jtitle>Optical materials express</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>4</volume><issue>2</issue><spage>288</spage><epage>299</epage><pages>288-299</pages><issn>2159-3930</issn><eissn>2159-3930</eissn><abstract>Finding the wavevectors (eigenvalues) and wavefronts (eigenvectors) in nanostructured metasurfaces is cast as a problem of finding the complex roots of a non-linear equation. A new algorithm is introduced for solving this problem; example eigenvalues are obtained and compared against the results from a popular, yet much more computationally expensive method built on a matrix eigenvalue problem. In contrast to the conventional solvers, the proposed method always returns a set of 'exact' individual eigenvalues. First, by using the Lehmer-Schur algorithm, we isolate individual complex roots from others, then use a zero-polishing method applied at the very final stage of ultimate eigenvalue localization. Exceptional computational performance, scalability, and accuracy are demonstrated.</abstract><doi>10.1364/OME.4.000288</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2159-3930
ispartof Optical materials express, 2014-02, Vol.4 (2), p.288-299
issn 2159-3930
2159-3930
language eng
recordid cdi_proquest_miscellaneous_1793226164
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Computation
Eigenvalues
Mathematical analysis
Plasmonics
Roots
Solvers
Wave fronts
title Fast Eigensolver for Plasmonic Metasurfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T10%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Eigensolver%20for%20Plasmonic%20Metasurfaces&rft.jtitle=Optical%20materials%20express&rft.au=Korotkevich,%20Alexander%20O.&rft.date=2014-02-01&rft.volume=4&rft.issue=2&rft.spage=288&rft.epage=299&rft.pages=288-299&rft.issn=2159-3930&rft.eissn=2159-3930&rft_id=info:doi/10.1364/OME.4.000288&rft_dat=%3Cproquest_cross%3E1793226164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793226164&rft_id=info:pmid/&rfr_iscdi=true