Fast Eigensolver for Plasmonic Metasurfaces

Finding the wavevectors (eigenvalues) and wavefronts (eigenvectors) in nanostructured metasurfaces is cast as a problem of finding the complex roots of a non-linear equation. A new algorithm is introduced for solving this problem; example eigenvalues are obtained and compared against the results fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical materials express 2014-02, Vol.4 (2), p.288-299
Hauptverfasser: Korotkevich, Alexander O., Ni, Xingjie, Kildishev, Alexander V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finding the wavevectors (eigenvalues) and wavefronts (eigenvectors) in nanostructured metasurfaces is cast as a problem of finding the complex roots of a non-linear equation. A new algorithm is introduced for solving this problem; example eigenvalues are obtained and compared against the results from a popular, yet much more computationally expensive method built on a matrix eigenvalue problem. In contrast to the conventional solvers, the proposed method always returns a set of 'exact' individual eigenvalues. First, by using the Lehmer-Schur algorithm, we isolate individual complex roots from others, then use a zero-polishing method applied at the very final stage of ultimate eigenvalue localization. Exceptional computational performance, scalability, and accuracy are demonstrated.
ISSN:2159-3930
2159-3930
DOI:10.1364/OME.4.000288