Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization

Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2016-01, Vol.168 (1), p.172-197
Hauptverfasser: Simonetto, Andrea, Jamali-Rad, Hadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 1
container_start_page 172
container_title Journal of optimization theory and applications
container_volume 168
creator Simonetto, Andrea
Jamali-Rad, Hadi
description Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice, and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes.
doi_str_mv 10.1007/s10957-015-0758-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793224614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3920449471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-107dc4d1e964d4c7b8ddd99b2afb0cd769a6b4358e4cc94b9641f01a90fcb21f3</originalsourceid><addsrcrecordid>eNp10M1KxDAUBeAgCo6jD-Cu4MZN9CZNm2apM_6BMCK6chHaNJEMbTMm7eD49KbUhQiu7uY7h8tB6JTABQHgl4GAyDgGkmHgWYFhD81IxlNMC17soxkApTilqThERyGsAUAUnM3Q25O3bdkkz1q5rfa7xHjXJgvXBd2FIeDrMug6WQ6RLCNpNy7Y3rouMc4nSxt6b6uhjyRGtvozWW1629qvcjTH6MCUTdAnP3eOXm9vXhb3-HF197C4esSK5bTHBHitWE20yFnNFK-Kuq6FqGhpKlA1z0WZVyzNCs2UEqyKjBggpQCjKkpMOkfnU-_Gu49Bh162NijdNGWn3RAk4SKllOWERXr2h67d4Lv4XVRZHv9JcxEVmZTyLgSvjdyMK_mdJCDHueU0t4xzy3FuCTFDp0yItnvX_lfzv6FvRmSDdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756462369</pqid></control><display><type>article</type><title>Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Simonetto, Andrea ; Jamali-Rad, Hadi</creator><creatorcontrib>Simonetto, Andrea ; Jamali-Rad, Hadi</creatorcontrib><description>Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice, and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-015-0758-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Computation ; Computational geometry ; Convergence ; Convex analysis ; Convexity ; Decomposition ; Engineering ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Recovery ; Studies ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2016-01, Vol.168 (1), p.172-197</ispartof><rights>The Author(s) 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-107dc4d1e964d4c7b8ddd99b2afb0cd769a6b4358e4cc94b9641f01a90fcb21f3</citedby><cites>FETCH-LOGICAL-c462t-107dc4d1e964d4c7b8ddd99b2afb0cd769a6b4358e4cc94b9641f01a90fcb21f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-015-0758-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-015-0758-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Simonetto, Andrea</creatorcontrib><creatorcontrib>Jamali-Rad, Hadi</creatorcontrib><title>Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice, and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computation</subject><subject>Computational geometry</subject><subject>Convergence</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>Decomposition</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Recovery</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10M1KxDAUBeAgCo6jD-Cu4MZN9CZNm2apM_6BMCK6chHaNJEMbTMm7eD49KbUhQiu7uY7h8tB6JTABQHgl4GAyDgGkmHgWYFhD81IxlNMC17soxkApTilqThERyGsAUAUnM3Q25O3bdkkz1q5rfa7xHjXJgvXBd2FIeDrMug6WQ6RLCNpNy7Y3rouMc4nSxt6b6uhjyRGtvozWW1629qvcjTH6MCUTdAnP3eOXm9vXhb3-HF197C4esSK5bTHBHitWE20yFnNFK-Kuq6FqGhpKlA1z0WZVyzNCs2UEqyKjBggpQCjKkpMOkfnU-_Gu49Bh162NijdNGWn3RAk4SKllOWERXr2h67d4Lv4XVRZHv9JcxEVmZTyLgSvjdyMK_mdJCDHueU0t4xzy3FuCTFDp0yItnvX_lfzv6FvRmSDdg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Simonetto, Andrea</creator><creator>Jamali-Rad, Hadi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization</title><author>Simonetto, Andrea ; Jamali-Rad, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-107dc4d1e964d4c7b8ddd99b2afb0cd769a6b4358e4cc94b9641f01a90fcb21f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computation</topic><topic>Computational geometry</topic><topic>Convergence</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>Decomposition</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Recovery</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simonetto, Andrea</creatorcontrib><creatorcontrib>Jamali-Rad, Hadi</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simonetto, Andrea</au><au>Jamali-Rad, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>168</volume><issue>1</issue><spage>172</spage><epage>197</epage><pages>172-197</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice, and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-015-0758-0</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2016-01, Vol.168 (1), p.172-197
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_miscellaneous_1793224614
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Applications of Mathematics
Approximation
Calculus of Variations and Optimal Control
Optimization
Computation
Computational geometry
Convergence
Convex analysis
Convexity
Decomposition
Engineering
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Recovery
Studies
Theory of Computation
title Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primal%20Recovery%20from%20Consensus-Based%20Dual%20Decomposition%20for%20Distributed%20Convex%20Optimization&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Simonetto,%20Andrea&rft.date=2016-01-01&rft.volume=168&rft.issue=1&rft.spage=172&rft.epage=197&rft.pages=172-197&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-015-0758-0&rft_dat=%3Cproquest_cross%3E3920449471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756462369&rft_id=info:pmid/&rfr_iscdi=true