Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization
Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgr...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2016-01, Vol.168 (1), p.172-197 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice, and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-015-0758-0 |