Optimal synchronization of oscillatory chemical reactions with complex pulse, square, and smooth waveforms signals maximizes Tsallis entropy

We show that the mathematical structure of Tsallis entropy underlies an important and ubiquitous problem in nonlinear science related to an efficient synchronization of weakly forced nonlinear oscillators. The maximization of the locking range of oscillators with the use of phase models is analyzed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2015-09, Vol.111 (5), p.50007-p1-50007-p6
Hauptverfasser: Tanaka, Hisa-Aki, Nishikawa, Isao, Kurths, Jürgen, Chen, Yifei, Kiss, István Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the mathematical structure of Tsallis entropy underlies an important and ubiquitous problem in nonlinear science related to an efficient synchronization of weakly forced nonlinear oscillators. The maximization of the locking range of oscillators with the use of phase models is analyzed with general constraints that encompass forcing waveform power, magnitude, or area. The optimization problem is then recasted as a general form of Tsallis entropy maximization. The solution of these optimization problems is shown to be a direct consequence from Hölder's inequality. The resulting new maximization principle is confirmed in numerical simulations and experiments with chemical oscillations with nickel electrodissolution. While weakly nonlinear oscillators have generic optimal waveforms (sinusoidal, 50% duty cycle square wave, and equally paced bipolar pulses for power-, area-, and magnitude-constraints, respectively), strongly nonlinear oscillators require more complex waveforms such as smooth, square, and pulse ones.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/111/50007