Evolutionary Game-Theoretic Solution for Virtual Routers with Padding Misbehavior in Cloud Computing

With the development of cloud computing and virtualization, a physical router can be multiplexed as a large number of virtual routers. TCP-based interactive applications have an incentive to improve their performance by padding “junk packets” into the network among real communication packets. This p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-7
Hauptverfasser: Bi, Xia-an, Liu, Hong, Wang, Xiaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the development of cloud computing and virtualization, a physical router can be multiplexed as a large number of virtual routers. TCP-based interactive applications have an incentive to improve their performance by padding “junk packets” into the network among real communication packets. This padding misbehavior will upgrade short TCP flows from “mice” to “elephants” and consequently lead to network congestion and breakdown. This paper presents a detailed solution and analysis for describing the normal behavior and padding misbehavior of virtual routers. In particular, a system model for analyzing behavior of virtual routers is based on evolutionary game model, and, through analyzing the stability of the equilibrium points, the stable point is the solution to the problem. The clear evolutionary path of network applications with the normal behavior and padding misbehavior is analyzed by the corresponding graph. Then this paper gives the behavior control suggestions to effectively restrain the padding misbehavior and maintain stable high-throughputs of the router. The simulation results demonstrate that our solution can effectively restrain the padding misbehavior and maintain stable high-throughputs of the router simultaneously compared with the classical queue management.
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/901461