Weight Optimization in Recurrent Neural Networks with Hybrid Metaheuristic Cuckoo Search Techniques for Data Classification

Recurrent neural network (RNN) has been widely used as a tool in the data classification. This network can be educated with gradient descent back propagation. However, traditional training algorithms have some drawbacks such as slow speed of convergence being not definite to find the global minimum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-12
Hauptverfasser: Chiroma, Haruna, Rehman, M. Z., Khan, Abdullah, Nawi, Nazri Mohd, Herawan, Tutut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recurrent neural network (RNN) has been widely used as a tool in the data classification. This network can be educated with gradient descent back propagation. However, traditional training algorithms have some drawbacks such as slow speed of convergence being not definite to find the global minimum of the error function since gradient descent may get stuck in local minima. As a solution, nature inspired metaheuristic algorithms provide derivative-free solution to optimize complex problems. This paper proposes a new metaheuristic search algorithm called Cuckoo Search (CS) based on Cuckoo bird’s behavior to train Elman recurrent network (ERN) and back propagation Elman recurrent network (BPERN) in achieving fast convergence rate and to avoid local minima problem. The proposed CSERN and CSBPERN algorithms are compared with artificial bee colony using BP algorithm and other hybrid variants algorithms. Specifically, some selected benchmark classification problems are used. The simulation results show that the computational efficiency of ERN and BPERN training process is highly enhanced when coupled with the proposed hybrid method.
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/868375