A Remark on Polyconvex Functions with Symmetry
For a given polyconvex function W , among all associated convex functions g of minors there exists the largest one; this function inherits all symmetry properties of W . For a given associated (not necessarily the largest) function g , one can still find an associated (possibly not the largest) func...
Gespeichert in:
Veröffentlicht in: | Journal of elasticity 2016-02, Vol.122 (2), p.255-260 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a given polyconvex function
W
, among all associated convex functions
g
of minors there exists the largest one; this function inherits all symmetry properties of
W
. For a given associated (not necessarily the largest) function
g
, one can still find an associated (possibly not the largest) function with the symmetry of
W
. This function is constructed by averaging of symmetry conjugated functions over the symmetry group of
W
using Haar’s measure. It follows that if a symmetric polyconvex function
W
has class
k
=0,…,∞ associated function, then the averaging produces a symmetric associated function that is class
k
as well. |
---|---|
ISSN: | 0374-3535 1573-2681 |
DOI: | 10.1007/s10659-015-9537-2 |