Kinetics of tRNA(Pyl) -mediated amber suppression in Escherichia coli translation reveals unexpected limiting steps and competing reactions

The utility of ribosomal incorporation of unnatural amino acids (AAs) in vivo is generally restricted by low efficiencies, even with the most widely used suppressor tRNA(Pyl) . Because of the difficulties of studying incorporation in vivo, almost nothing is known about the limiting steps after tRNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2016-07, Vol.113 (7), p.1552-1559
Hauptverfasser: Wang, Jinfan, Kwiatkowski, Marek, Forster, Anthony C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The utility of ribosomal incorporation of unnatural amino acids (AAs) in vivo is generally restricted by low efficiencies, even with the most widely used suppressor tRNA(Pyl) . Because of the difficulties of studying incorporation in vivo, almost nothing is known about the limiting steps after tRNA charging. Here, we measured the kinetics of all subsequent steps using a purified Escherichia coli translation system. Dipeptide formation from initiator fMet-tRNA(fMet) and tRNA(Pyl) charged with allylglycine or methylserine displayed unexpectedly sluggish biphasic kinetics, ∼30-fold slower than for native substrates. The amplitude of the fast phases increased with increasing EF-Tu concentration, allowing measurement of Kd values of EF-Tu binding, both of which were ∼25-fold weaker than normal. However, binding could be increased ∼30-fold by lowering temperature. The fast phase rates were limited by the surprisingly ∼10-fold less efficient binding of EF-Tu:GTP:AA-tRNA(Pyl) ternary complex to the ribosomes, not GTP hydrolysis or peptide bond formation. Furthermore, processivity was unexpectedly impaired as ∼40% of the dipeptidyl-tRNA(Pyl) could not be elongated to tripeptide. Dipeptide formation was slow enough that termination due to misreading the UAG codon by non-cognate RF2 became very significant. This new understanding provides a framework for improving unnatural AA incorporation by amber suppression. Biotechnol. Bioeng. 2016;113: 1552-1559. © 2015 Wiley Periodicals, Inc.
ISSN:1097-0290
DOI:10.1002/bit.25917