Gene-environment interactions in obesity: implication for future applications in preventive medicine
Obesity is associated with environmental factors; however, information about gene-environment interactions is lacking. We aimed to elucidate the effects of gene-environment interactions on obesity, specifically between genetic predisposition and various obesity-related lifestyle factors, using data...
Gespeichert in:
Veröffentlicht in: | Journal of human genetics 2016-04, Vol.61 (4), p.317-322 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 4 |
container_start_page | 317 |
container_title | Journal of human genetics |
container_volume | 61 |
creator | Nakamura, Sho Narimatsu, Hiroto Sato, Hidenori Sho, Ri Otani, Katsumi Kawasaki, Ryo Karasawa, Shigeru Daimon, Makoto Yamashita, Hidetoshi Kubota, Isao Ueno, Yoshiyuki Kato, Takeo Yoshioka, Takashi Fukao, Akira Kayama, Takamasa |
description | Obesity is associated with environmental factors; however, information about gene-environment interactions is lacking. We aimed to elucidate the effects of gene-environment interactions on obesity, specifically between genetic predisposition and various obesity-related lifestyle factors, using data from a population-based prospective cohort study. The genetic risk score (GRS) calculated from East Asian ancestry single-nucleotide polymorphisms was significantly associated with the body mass index (BMI) at baseline (P |
doi_str_mv | 10.1038/jhg.2015.148 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790967141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790967141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-aa989587a82a5d078d3fa023a900527fa2552c3def02ee6d3188fd7560ffa7063</originalsourceid><addsrcrecordid>eNqNkTtLBDEURoMoPlY7axmwsXDWvJOxE_EFgo2CXYgzN5plJzMmMwv7783uqoWVVZKbwwf3OwgdEzwlmOmL2cf7lGIipoTrLbRPOBMlZfR1e33npSCS7KGDlGYYY0YV3UV7VEqhKsb3UXMHAUoICx-70EIYCh8GiLYefBdSfhTdGyQ_LC8L3_ZzX9vVR-G6WLhxGCMUtv8dr_k-wiLn-AUULTS-9gEO0Y6z8wRH3-cEvdzePF_fl49Pdw_XV49lzTkZSmsrXQmtrKZWNFjphjmLKbMVxoIqZ6kQtGYNOEwBZMOI1q5RQmLnrMKSTdDZJreP3ecIaTCtTzXM5zZANyZDVIUrqQgn_0A155JWucIJOv2DzroxhryIIRlSjEshMnW-oerYpRTBmT761salIdisRJksyqxEmSwq4yffoeNbrukX_jHDvgB9II7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844734655</pqid></control><display><type>article</type><title>Gene-environment interactions in obesity: implication for future applications in preventive medicine</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Nakamura, Sho ; Narimatsu, Hiroto ; Sato, Hidenori ; Sho, Ri ; Otani, Katsumi ; Kawasaki, Ryo ; Karasawa, Shigeru ; Daimon, Makoto ; Yamashita, Hidetoshi ; Kubota, Isao ; Ueno, Yoshiyuki ; Kato, Takeo ; Yoshioka, Takashi ; Fukao, Akira ; Kayama, Takamasa</creator><creatorcontrib>Nakamura, Sho ; Narimatsu, Hiroto ; Sato, Hidenori ; Sho, Ri ; Otani, Katsumi ; Kawasaki, Ryo ; Karasawa, Shigeru ; Daimon, Makoto ; Yamashita, Hidetoshi ; Kubota, Isao ; Ueno, Yoshiyuki ; Kato, Takeo ; Yoshioka, Takashi ; Fukao, Akira ; Kayama, Takamasa</creatorcontrib><description>Obesity is associated with environmental factors; however, information about gene-environment interactions is lacking. We aimed to elucidate the effects of gene-environment interactions on obesity, specifically between genetic predisposition and various obesity-related lifestyle factors, using data from a population-based prospective cohort study. The genetic risk score (GRS) calculated from East Asian ancestry single-nucleotide polymorphisms was significantly associated with the body mass index (BMI) at baseline (P<0.001). Significant gene-environment interactions were observed for six nutritional factors, alcohol intake, metabolic equivalents-hour per day and the homeostasis model assessment ratio. The GRS altered the effects of lifestyle factors on BMI. Increases in the BMI at baseline per unit intake for each nutritional factor differed depending on the GRS. However, we did not observe significant correlations between the GRS and annual changes in BMI during the follow-up period. This study suggests that the effects of lifestyle factors on obesity differ depending on the genetic risk factors. The approach used to evaluate gene-environment interaction in this study may be applicable to the practice of preventive medicine.</description><identifier>ISSN: 1434-5161</identifier><identifier>EISSN: 1435-232X</identifier><identifier>DOI: 10.1038/jhg.2015.148</identifier><identifier>PMID: 26657934</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Body Mass Index ; Gene-Environment Interaction ; Genetic Predisposition to Disease ; Genotype ; Humans ; Middle Aged ; Obesity - genetics ; Obesity - pathology ; Polymorphism, Single Nucleotide ; Risk Factors</subject><ispartof>Journal of human genetics, 2016-04, Vol.61 (4), p.317-322</ispartof><rights>Copyright Nature Publishing Group Apr 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-aa989587a82a5d078d3fa023a900527fa2552c3def02ee6d3188fd7560ffa7063</citedby><cites>FETCH-LOGICAL-c441t-aa989587a82a5d078d3fa023a900527fa2552c3def02ee6d3188fd7560ffa7063</cites><orcidid>0000-0001-5623-4250 ; 0000-0002-5378-9477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26657934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamura, Sho</creatorcontrib><creatorcontrib>Narimatsu, Hiroto</creatorcontrib><creatorcontrib>Sato, Hidenori</creatorcontrib><creatorcontrib>Sho, Ri</creatorcontrib><creatorcontrib>Otani, Katsumi</creatorcontrib><creatorcontrib>Kawasaki, Ryo</creatorcontrib><creatorcontrib>Karasawa, Shigeru</creatorcontrib><creatorcontrib>Daimon, Makoto</creatorcontrib><creatorcontrib>Yamashita, Hidetoshi</creatorcontrib><creatorcontrib>Kubota, Isao</creatorcontrib><creatorcontrib>Ueno, Yoshiyuki</creatorcontrib><creatorcontrib>Kato, Takeo</creatorcontrib><creatorcontrib>Yoshioka, Takashi</creatorcontrib><creatorcontrib>Fukao, Akira</creatorcontrib><creatorcontrib>Kayama, Takamasa</creatorcontrib><title>Gene-environment interactions in obesity: implication for future applications in preventive medicine</title><title>Journal of human genetics</title><addtitle>J Hum Genet</addtitle><description>Obesity is associated with environmental factors; however, information about gene-environment interactions is lacking. We aimed to elucidate the effects of gene-environment interactions on obesity, specifically between genetic predisposition and various obesity-related lifestyle factors, using data from a population-based prospective cohort study. The genetic risk score (GRS) calculated from East Asian ancestry single-nucleotide polymorphisms was significantly associated with the body mass index (BMI) at baseline (P<0.001). Significant gene-environment interactions were observed for six nutritional factors, alcohol intake, metabolic equivalents-hour per day and the homeostasis model assessment ratio. The GRS altered the effects of lifestyle factors on BMI. Increases in the BMI at baseline per unit intake for each nutritional factor differed depending on the GRS. However, we did not observe significant correlations between the GRS and annual changes in BMI during the follow-up period. This study suggests that the effects of lifestyle factors on obesity differ depending on the genetic risk factors. The approach used to evaluate gene-environment interaction in this study may be applicable to the practice of preventive medicine.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Body Mass Index</subject><subject>Gene-Environment Interaction</subject><subject>Genetic Predisposition to Disease</subject><subject>Genotype</subject><subject>Humans</subject><subject>Middle Aged</subject><subject>Obesity - genetics</subject><subject>Obesity - pathology</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Risk Factors</subject><issn>1434-5161</issn><issn>1435-232X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkTtLBDEURoMoPlY7axmwsXDWvJOxE_EFgo2CXYgzN5plJzMmMwv7783uqoWVVZKbwwf3OwgdEzwlmOmL2cf7lGIipoTrLbRPOBMlZfR1e33npSCS7KGDlGYYY0YV3UV7VEqhKsb3UXMHAUoICx-70EIYCh8GiLYefBdSfhTdGyQ_LC8L3_ZzX9vVR-G6WLhxGCMUtv8dr_k-wiLn-AUULTS-9gEO0Y6z8wRH3-cEvdzePF_fl49Pdw_XV49lzTkZSmsrXQmtrKZWNFjphjmLKbMVxoIqZ6kQtGYNOEwBZMOI1q5RQmLnrMKSTdDZJreP3ecIaTCtTzXM5zZANyZDVIUrqQgn_0A155JWucIJOv2DzroxhryIIRlSjEshMnW-oerYpRTBmT761salIdisRJksyqxEmSwq4yffoeNbrukX_jHDvgB9II7s</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Nakamura, Sho</creator><creator>Narimatsu, Hiroto</creator><creator>Sato, Hidenori</creator><creator>Sho, Ri</creator><creator>Otani, Katsumi</creator><creator>Kawasaki, Ryo</creator><creator>Karasawa, Shigeru</creator><creator>Daimon, Makoto</creator><creator>Yamashita, Hidetoshi</creator><creator>Kubota, Isao</creator><creator>Ueno, Yoshiyuki</creator><creator>Kato, Takeo</creator><creator>Yoshioka, Takashi</creator><creator>Fukao, Akira</creator><creator>Kayama, Takamasa</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5623-4250</orcidid><orcidid>https://orcid.org/0000-0002-5378-9477</orcidid></search><sort><creationdate>20160401</creationdate><title>Gene-environment interactions in obesity: implication for future applications in preventive medicine</title><author>Nakamura, Sho ; Narimatsu, Hiroto ; Sato, Hidenori ; Sho, Ri ; Otani, Katsumi ; Kawasaki, Ryo ; Karasawa, Shigeru ; Daimon, Makoto ; Yamashita, Hidetoshi ; Kubota, Isao ; Ueno, Yoshiyuki ; Kato, Takeo ; Yoshioka, Takashi ; Fukao, Akira ; Kayama, Takamasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-aa989587a82a5d078d3fa023a900527fa2552c3def02ee6d3188fd7560ffa7063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Body Mass Index</topic><topic>Gene-Environment Interaction</topic><topic>Genetic Predisposition to Disease</topic><topic>Genotype</topic><topic>Humans</topic><topic>Middle Aged</topic><topic>Obesity - genetics</topic><topic>Obesity - pathology</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Sho</creatorcontrib><creatorcontrib>Narimatsu, Hiroto</creatorcontrib><creatorcontrib>Sato, Hidenori</creatorcontrib><creatorcontrib>Sho, Ri</creatorcontrib><creatorcontrib>Otani, Katsumi</creatorcontrib><creatorcontrib>Kawasaki, Ryo</creatorcontrib><creatorcontrib>Karasawa, Shigeru</creatorcontrib><creatorcontrib>Daimon, Makoto</creatorcontrib><creatorcontrib>Yamashita, Hidetoshi</creatorcontrib><creatorcontrib>Kubota, Isao</creatorcontrib><creatorcontrib>Ueno, Yoshiyuki</creatorcontrib><creatorcontrib>Kato, Takeo</creatorcontrib><creatorcontrib>Yoshioka, Takashi</creatorcontrib><creatorcontrib>Fukao, Akira</creatorcontrib><creatorcontrib>Kayama, Takamasa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Sho</au><au>Narimatsu, Hiroto</au><au>Sato, Hidenori</au><au>Sho, Ri</au><au>Otani, Katsumi</au><au>Kawasaki, Ryo</au><au>Karasawa, Shigeru</au><au>Daimon, Makoto</au><au>Yamashita, Hidetoshi</au><au>Kubota, Isao</au><au>Ueno, Yoshiyuki</au><au>Kato, Takeo</au><au>Yoshioka, Takashi</au><au>Fukao, Akira</au><au>Kayama, Takamasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene-environment interactions in obesity: implication for future applications in preventive medicine</atitle><jtitle>Journal of human genetics</jtitle><addtitle>J Hum Genet</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>61</volume><issue>4</issue><spage>317</spage><epage>322</epage><pages>317-322</pages><issn>1434-5161</issn><eissn>1435-232X</eissn><abstract>Obesity is associated with environmental factors; however, information about gene-environment interactions is lacking. We aimed to elucidate the effects of gene-environment interactions on obesity, specifically between genetic predisposition and various obesity-related lifestyle factors, using data from a population-based prospective cohort study. The genetic risk score (GRS) calculated from East Asian ancestry single-nucleotide polymorphisms was significantly associated with the body mass index (BMI) at baseline (P<0.001). Significant gene-environment interactions were observed for six nutritional factors, alcohol intake, metabolic equivalents-hour per day and the homeostasis model assessment ratio. The GRS altered the effects of lifestyle factors on BMI. Increases in the BMI at baseline per unit intake for each nutritional factor differed depending on the GRS. However, we did not observe significant correlations between the GRS and annual changes in BMI during the follow-up period. This study suggests that the effects of lifestyle factors on obesity differ depending on the genetic risk factors. The approach used to evaluate gene-environment interaction in this study may be applicable to the practice of preventive medicine.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>26657934</pmid><doi>10.1038/jhg.2015.148</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5623-4250</orcidid><orcidid>https://orcid.org/0000-0002-5378-9477</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-5161 |
ispartof | Journal of human genetics, 2016-04, Vol.61 (4), p.317-322 |
issn | 1434-5161 1435-232X |
language | eng |
recordid | cdi_proquest_miscellaneous_1790967141 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adult Aged Aged, 80 and over Body Mass Index Gene-Environment Interaction Genetic Predisposition to Disease Genotype Humans Middle Aged Obesity - genetics Obesity - pathology Polymorphism, Single Nucleotide Risk Factors |
title | Gene-environment interactions in obesity: implication for future applications in preventive medicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene-environment%20interactions%20in%20obesity:%20implication%20for%20future%20applications%20in%20preventive%20medicine&rft.jtitle=Journal%20of%20human%20genetics&rft.au=Nakamura,%20Sho&rft.date=2016-04-01&rft.volume=61&rft.issue=4&rft.spage=317&rft.epage=322&rft.pages=317-322&rft.issn=1434-5161&rft.eissn=1435-232X&rft_id=info:doi/10.1038/jhg.2015.148&rft_dat=%3Cproquest_cross%3E1790967141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844734655&rft_id=info:pmid/26657934&rfr_iscdi=true |