Effects of Droplet Composition on Nanodroplet-Mediated Histotripsy
Abstract Nanodroplet-mediated histotripsy (NMH) is a targeted ablation technique combining histotripsy with nanodroplets that can be selectively delivered to tumor cells. In two previous studies, polymer-encapsulated perfluoropentane nanodroplets were used to generate well-defined ablation similar t...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2016-04, Vol.42 (4), p.931-946 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Nanodroplet-mediated histotripsy (NMH) is a targeted ablation technique combining histotripsy with nanodroplets that can be selectively delivered to tumor cells. In two previous studies, polymer-encapsulated perfluoropentane nanodroplets were used to generate well-defined ablation similar to that obtained with histotripsy, but at significantly lower pressure, when NMH therapy was applied at a pulse repetition frequency (PRF) of 10 Hz. However, cavitation was not maintained over multiple pulses when ultrasound was applied at a lower PRF ( i.e. , 1–5 Hz). We hypothesized that nanodroplets with a higher-boiling-point perfluorocarbon core would provide sustainable cavitation nuclei, allowing cavitation to be maintained over multiple pulses, even at low PRF, which is needed for efficient and complete tissue fractionation via histotripsy. To test this hypothesis, we investigated the effects of droplet composition on NMH therapy by applying histotripsy at various frequencies (345 kHz, 500 kHz, 1.5 MHz, 3 MHz) to tissue phantoms containing perfluoropentane (PFP, boiling point ∼29°C, surface tension ∼9.5 mN/m) and perfluorohexane (PFH, boiling point ∼56°C, surface tension ∼11.9 mN/m) nanodroplets. First, the effects of droplet composition on the NMH cavitation threshold were investigated, with results revealing a significant decrease (>10 MPa) in the peak negative pressure ( p− ) cavitation threshold for both types of nanodroplets compared with controls. A slight decrease (∼1–3 MPa) in threshold was observed for PFP phantoms compared with PFH phantoms. Next, the ability of nanodroplets to function as sustainable cavitation nuclei over multiple pulses was investigated, with results revealing that PFH nanodroplets were sustainable cavitation nuclei over 1,000 pulses, whereas PFP nanodroplets were destroyed during the first few pulses ( |
---|---|
ISSN: | 0301-5629 1879-291X |
DOI: | 10.1016/j.ultrasmedbio.2015.11.027 |