Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models
Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model...
Gespeichert in:
Veröffentlicht in: | Water resources research 2016-03, Vol.52 (3), p.1984-2008 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2008 |
---|---|
container_issue | 3 |
container_start_page | 1984 |
container_title | Water resources research |
container_volume | 52 |
creator | Gong, Wei Duan, Qingyun Li, Jianduo Wang, Chen Di, Zhenhua Ye, Aizhong Miao, Chiyuan Dai, Yongjiu |
description | Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling‐based optimization (MO‐ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO‐ASMO algorithm against NSGA‐II and SUMO with 13 test functions and a land surface model ‐ the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO‐ASMO.
Key Points:
Develop a surrogate‐based multiobjective optimization method
Test the method with 13 functions and one land surface model
Evaluate the effectiveness and efficiency of the proposed method |
doi_str_mv | 10.1002/2015WR018230 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790933987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907280138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4719-2c4c1b2bb3c2eec13088b50658e48ec79155bb03bfd4306497db4a01e256cad3</originalsourceid><addsrcrecordid>eNp9kU1qHDEQhYVJwBPbOx9AkE0W7qT00yNpGYbECTgYBoOXjaSunvSgHnWk6ThjCPgIOWNOEtmdRfAiqyp4Xz1e8Qg5Z_CWAfB3HFh9uwamuYAjsmBGykoZJV6QBYAUFRNGHZNXOW8BmKyXakF-fpnCvo9ui37ff0dqWzs-LXlKKW7sHukQWwz9bvP74ZezGVsaCzH097bc7WgXEx1tsgPuMVHMRZqF2NFg0wYvqI_DGPAH3WAcvx5y722YTfMpednZkPHs7zwhNx8_3Kw-VVfXl59X768qKxUzFffSM8edE54jeiZAa1fDstYoNXplWF07B8J1rRSwlEa1TlpgyOult604IW9m2zHFb1PJ2Ax99hiC3WGccsOUASOE0aqgr5-h2zilXQnXMAOKa2BCF-pipnyKOSfsmjGVv9OhYdA8VtH8W0XBxYzf9QEP_2Wb2_VqzZmWRvwBaVaOCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907280138</pqid></control><display><type>article</type><title>Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gong, Wei ; Duan, Qingyun ; Li, Jianduo ; Wang, Chen ; Di, Zhenhua ; Ye, Aizhong ; Miao, Chiyuan ; Dai, Yongjiu</creator><creatorcontrib>Gong, Wei ; Duan, Qingyun ; Li, Jianduo ; Wang, Chen ; Di, Zhenhua ; Ye, Aizhong ; Miao, Chiyuan ; Dai, Yongjiu</creatorcontrib><description>Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling‐based optimization (MO‐ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO‐ASMO algorithm against NSGA‐II and SUMO with 13 test functions and a land surface model ‐ the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO‐ASMO.
Key Points:
Develop a surrogate‐based multiobjective optimization method
Test the method with 13 functions and one land surface model
Evaluate the effectiveness and efficiency of the proposed method</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2015WR018230</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Adaptive algorithms ; adaptive sampling ; Algorithms ; Calibration ; Computer applications ; Cost engineering ; Dynamic models ; Efficiency ; Gaussian processes regression ; Geophysics ; Mathematical analysis ; Mathematical models ; Methods ; Modelling ; multiobjective optimization ; Multiple objective analysis ; Optimization ; Optimization algorithms ; Parameter estimation ; Parameterization ; Searching ; Specifications ; surrogate model ; Uncertainty</subject><ispartof>Water resources research, 2016-03, Vol.52 (3), p.1984-2008</ispartof><rights>2015. The Authors.</rights><rights>2015. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4719-2c4c1b2bb3c2eec13088b50658e48ec79155bb03bfd4306497db4a01e256cad3</citedby><cites>FETCH-LOGICAL-a4719-2c4c1b2bb3c2eec13088b50658e48ec79155bb03bfd4306497db4a01e256cad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015WR018230$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015WR018230$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Duan, Qingyun</creatorcontrib><creatorcontrib>Li, Jianduo</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Di, Zhenhua</creatorcontrib><creatorcontrib>Ye, Aizhong</creatorcontrib><creatorcontrib>Miao, Chiyuan</creatorcontrib><creatorcontrib>Dai, Yongjiu</creatorcontrib><title>Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models</title><title>Water resources research</title><description>Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling‐based optimization (MO‐ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO‐ASMO algorithm against NSGA‐II and SUMO with 13 test functions and a land surface model ‐ the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO‐ASMO.
Key Points:
Develop a surrogate‐based multiobjective optimization method
Test the method with 13 functions and one land surface model
Evaluate the effectiveness and efficiency of the proposed method</description><subject>Adaptive algorithms</subject><subject>adaptive sampling</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Computer applications</subject><subject>Cost engineering</subject><subject>Dynamic models</subject><subject>Efficiency</subject><subject>Gaussian processes regression</subject><subject>Geophysics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>multiobjective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>Parameterization</subject><subject>Searching</subject><subject>Specifications</subject><subject>surrogate model</subject><subject>Uncertainty</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kU1qHDEQhYVJwBPbOx9AkE0W7qT00yNpGYbECTgYBoOXjaSunvSgHnWk6ThjCPgIOWNOEtmdRfAiqyp4Xz1e8Qg5Z_CWAfB3HFh9uwamuYAjsmBGykoZJV6QBYAUFRNGHZNXOW8BmKyXakF-fpnCvo9ui37ff0dqWzs-LXlKKW7sHukQWwz9bvP74ZezGVsaCzH097bc7WgXEx1tsgPuMVHMRZqF2NFg0wYvqI_DGPAH3WAcvx5y722YTfMpednZkPHs7zwhNx8_3Kw-VVfXl59X768qKxUzFffSM8edE54jeiZAa1fDstYoNXplWF07B8J1rRSwlEa1TlpgyOult604IW9m2zHFb1PJ2Ax99hiC3WGccsOUASOE0aqgr5-h2zilXQnXMAOKa2BCF-pipnyKOSfsmjGVv9OhYdA8VtH8W0XBxYzf9QEP_2Wb2_VqzZmWRvwBaVaOCQ</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Gong, Wei</creator><creator>Duan, Qingyun</creator><creator>Li, Jianduo</creator><creator>Wang, Chen</creator><creator>Di, Zhenhua</creator><creator>Ye, Aizhong</creator><creator>Miao, Chiyuan</creator><creator>Dai, Yongjiu</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201603</creationdate><title>Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models</title><author>Gong, Wei ; Duan, Qingyun ; Li, Jianduo ; Wang, Chen ; Di, Zhenhua ; Ye, Aizhong ; Miao, Chiyuan ; Dai, Yongjiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4719-2c4c1b2bb3c2eec13088b50658e48ec79155bb03bfd4306497db4a01e256cad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive algorithms</topic><topic>adaptive sampling</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Computer applications</topic><topic>Cost engineering</topic><topic>Dynamic models</topic><topic>Efficiency</topic><topic>Gaussian processes regression</topic><topic>Geophysics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>multiobjective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>Parameterization</topic><topic>Searching</topic><topic>Specifications</topic><topic>surrogate model</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Duan, Qingyun</creatorcontrib><creatorcontrib>Li, Jianduo</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Di, Zhenhua</creatorcontrib><creatorcontrib>Ye, Aizhong</creatorcontrib><creatorcontrib>Miao, Chiyuan</creatorcontrib><creatorcontrib>Dai, Yongjiu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Wei</au><au>Duan, Qingyun</au><au>Li, Jianduo</au><au>Wang, Chen</au><au>Di, Zhenhua</au><au>Ye, Aizhong</au><au>Miao, Chiyuan</au><au>Dai, Yongjiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models</atitle><jtitle>Water resources research</jtitle><date>2016-03</date><risdate>2016</risdate><volume>52</volume><issue>3</issue><spage>1984</spage><epage>2008</epage><pages>1984-2008</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling‐based optimization (MO‐ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO‐ASMO algorithm against NSGA‐II and SUMO with 13 test functions and a land surface model ‐ the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO‐ASMO.
Key Points:
Develop a surrogate‐based multiobjective optimization method
Test the method with 13 functions and one land surface model
Evaluate the effectiveness and efficiency of the proposed method</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2015WR018230</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2016-03, Vol.52 (3), p.1984-2008 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_miscellaneous_1790933987 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptive algorithms adaptive sampling Algorithms Calibration Computer applications Cost engineering Dynamic models Efficiency Gaussian processes regression Geophysics Mathematical analysis Mathematical models Methods Modelling multiobjective optimization Multiple objective analysis Optimization Optimization algorithms Parameter estimation Parameterization Searching Specifications surrogate model Uncertainty |
title | Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20adaptive%20surrogate%20modeling%E2%80%90based%20optimization%20for%20parameter%20estimation%20of%20large,%20complex%20geophysical%20models&rft.jtitle=Water%20resources%20research&rft.au=Gong,%20Wei&rft.date=2016-03&rft.volume=52&rft.issue=3&rft.spage=1984&rft.epage=2008&rft.pages=1984-2008&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2015WR018230&rft_dat=%3Cproquest_cross%3E1907280138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907280138&rft_id=info:pmid/&rfr_iscdi=true |