Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models

Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2016-03, Vol.52 (3), p.1984-2008
Hauptverfasser: Gong, Wei, Duan, Qingyun, Li, Jianduo, Wang, Chen, Di, Zhenhua, Ye, Aizhong, Miao, Chiyuan, Dai, Yongjiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2008
container_issue 3
container_start_page 1984
container_title Water resources research
container_volume 52
creator Gong, Wei
Duan, Qingyun
Li, Jianduo
Wang, Chen
Di, Zhenhua
Ye, Aizhong
Miao, Chiyuan
Dai, Yongjiu
description Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling‐based optimization (MO‐ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO‐ASMO algorithm against NSGA‐II and SUMO with 13 test functions and a land surface model ‐ the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO‐ASMO. Key Points: Develop a surrogate‐based multiobjective optimization method Test the method with 13 functions and one land surface model Evaluate the effectiveness and efficiency of the proposed method
doi_str_mv 10.1002/2015WR018230
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790933987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907280138</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4719-2c4c1b2bb3c2eec13088b50658e48ec79155bb03bfd4306497db4a01e256cad3</originalsourceid><addsrcrecordid>eNp9kU1qHDEQhYVJwBPbOx9AkE0W7qT00yNpGYbECTgYBoOXjaSunvSgHnWk6ThjCPgIOWNOEtmdRfAiqyp4Xz1e8Qg5Z_CWAfB3HFh9uwamuYAjsmBGykoZJV6QBYAUFRNGHZNXOW8BmKyXakF-fpnCvo9ui37ff0dqWzs-LXlKKW7sHukQWwz9bvP74ZezGVsaCzH097bc7WgXEx1tsgPuMVHMRZqF2NFg0wYvqI_DGPAH3WAcvx5y722YTfMpednZkPHs7zwhNx8_3Kw-VVfXl59X768qKxUzFffSM8edE54jeiZAa1fDstYoNXplWF07B8J1rRSwlEa1TlpgyOult604IW9m2zHFb1PJ2Ax99hiC3WGccsOUASOE0aqgr5-h2zilXQnXMAOKa2BCF-pipnyKOSfsmjGVv9OhYdA8VtH8W0XBxYzf9QEP_2Wb2_VqzZmWRvwBaVaOCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907280138</pqid></control><display><type>article</type><title>Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gong, Wei ; Duan, Qingyun ; Li, Jianduo ; Wang, Chen ; Di, Zhenhua ; Ye, Aizhong ; Miao, Chiyuan ; Dai, Yongjiu</creator><creatorcontrib>Gong, Wei ; Duan, Qingyun ; Li, Jianduo ; Wang, Chen ; Di, Zhenhua ; Ye, Aizhong ; Miao, Chiyuan ; Dai, Yongjiu</creatorcontrib><description>Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling‐based optimization (MO‐ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO‐ASMO algorithm against NSGA‐II and SUMO with 13 test functions and a land surface model ‐ the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO‐ASMO. Key Points: Develop a surrogate‐based multiobjective optimization method Test the method with 13 functions and one land surface model Evaluate the effectiveness and efficiency of the proposed method</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2015WR018230</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Adaptive algorithms ; adaptive sampling ; Algorithms ; Calibration ; Computer applications ; Cost engineering ; Dynamic models ; Efficiency ; Gaussian processes regression ; Geophysics ; Mathematical analysis ; Mathematical models ; Methods ; Modelling ; multiobjective optimization ; Multiple objective analysis ; Optimization ; Optimization algorithms ; Parameter estimation ; Parameterization ; Searching ; Specifications ; surrogate model ; Uncertainty</subject><ispartof>Water resources research, 2016-03, Vol.52 (3), p.1984-2008</ispartof><rights>2015. The Authors.</rights><rights>2015. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4719-2c4c1b2bb3c2eec13088b50658e48ec79155bb03bfd4306497db4a01e256cad3</citedby><cites>FETCH-LOGICAL-a4719-2c4c1b2bb3c2eec13088b50658e48ec79155bb03bfd4306497db4a01e256cad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015WR018230$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015WR018230$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Duan, Qingyun</creatorcontrib><creatorcontrib>Li, Jianduo</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Di, Zhenhua</creatorcontrib><creatorcontrib>Ye, Aizhong</creatorcontrib><creatorcontrib>Miao, Chiyuan</creatorcontrib><creatorcontrib>Dai, Yongjiu</creatorcontrib><title>Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models</title><title>Water resources research</title><description>Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling‐based optimization (MO‐ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO‐ASMO algorithm against NSGA‐II and SUMO with 13 test functions and a land surface model ‐ the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO‐ASMO. Key Points: Develop a surrogate‐based multiobjective optimization method Test the method with 13 functions and one land surface model Evaluate the effectiveness and efficiency of the proposed method</description><subject>Adaptive algorithms</subject><subject>adaptive sampling</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Computer applications</subject><subject>Cost engineering</subject><subject>Dynamic models</subject><subject>Efficiency</subject><subject>Gaussian processes regression</subject><subject>Geophysics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>multiobjective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>Parameterization</subject><subject>Searching</subject><subject>Specifications</subject><subject>surrogate model</subject><subject>Uncertainty</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kU1qHDEQhYVJwBPbOx9AkE0W7qT00yNpGYbECTgYBoOXjaSunvSgHnWk6ThjCPgIOWNOEtmdRfAiqyp4Xz1e8Qg5Z_CWAfB3HFh9uwamuYAjsmBGykoZJV6QBYAUFRNGHZNXOW8BmKyXakF-fpnCvo9ui37ff0dqWzs-LXlKKW7sHukQWwz9bvP74ZezGVsaCzH097bc7WgXEx1tsgPuMVHMRZqF2NFg0wYvqI_DGPAH3WAcvx5y722YTfMpednZkPHs7zwhNx8_3Kw-VVfXl59X768qKxUzFffSM8edE54jeiZAa1fDstYoNXplWF07B8J1rRSwlEa1TlpgyOult604IW9m2zHFb1PJ2Ax99hiC3WGccsOUASOE0aqgr5-h2zilXQnXMAOKa2BCF-pipnyKOSfsmjGVv9OhYdA8VtH8W0XBxYzf9QEP_2Wb2_VqzZmWRvwBaVaOCQ</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Gong, Wei</creator><creator>Duan, Qingyun</creator><creator>Li, Jianduo</creator><creator>Wang, Chen</creator><creator>Di, Zhenhua</creator><creator>Ye, Aizhong</creator><creator>Miao, Chiyuan</creator><creator>Dai, Yongjiu</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201603</creationdate><title>Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models</title><author>Gong, Wei ; Duan, Qingyun ; Li, Jianduo ; Wang, Chen ; Di, Zhenhua ; Ye, Aizhong ; Miao, Chiyuan ; Dai, Yongjiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4719-2c4c1b2bb3c2eec13088b50658e48ec79155bb03bfd4306497db4a01e256cad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive algorithms</topic><topic>adaptive sampling</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Computer applications</topic><topic>Cost engineering</topic><topic>Dynamic models</topic><topic>Efficiency</topic><topic>Gaussian processes regression</topic><topic>Geophysics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>multiobjective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>Parameterization</topic><topic>Searching</topic><topic>Specifications</topic><topic>surrogate model</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Duan, Qingyun</creatorcontrib><creatorcontrib>Li, Jianduo</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Di, Zhenhua</creatorcontrib><creatorcontrib>Ye, Aizhong</creatorcontrib><creatorcontrib>Miao, Chiyuan</creatorcontrib><creatorcontrib>Dai, Yongjiu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Wei</au><au>Duan, Qingyun</au><au>Li, Jianduo</au><au>Wang, Chen</au><au>Di, Zhenhua</au><au>Ye, Aizhong</au><au>Miao, Chiyuan</au><au>Dai, Yongjiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models</atitle><jtitle>Water resources research</jtitle><date>2016-03</date><risdate>2016</risdate><volume>52</volume><issue>3</issue><spage>1984</spage><epage>2008</epage><pages>1984-2008</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling‐based optimization (MO‐ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO‐ASMO algorithm against NSGA‐II and SUMO with 13 test functions and a land surface model ‐ the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO‐ASMO. Key Points: Develop a surrogate‐based multiobjective optimization method Test the method with 13 functions and one land surface model Evaluate the effectiveness and efficiency of the proposed method</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2015WR018230</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2016-03, Vol.52 (3), p.1984-2008
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_1790933987
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Adaptive algorithms
adaptive sampling
Algorithms
Calibration
Computer applications
Cost engineering
Dynamic models
Efficiency
Gaussian processes regression
Geophysics
Mathematical analysis
Mathematical models
Methods
Modelling
multiobjective optimization
Multiple objective analysis
Optimization
Optimization algorithms
Parameter estimation
Parameterization
Searching
Specifications
surrogate model
Uncertainty
title Multiobjective adaptive surrogate modeling‐based optimization for parameter estimation of large, complex geophysical models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20adaptive%20surrogate%20modeling%E2%80%90based%20optimization%20for%20parameter%20estimation%20of%20large,%20complex%20geophysical%20models&rft.jtitle=Water%20resources%20research&rft.au=Gong,%20Wei&rft.date=2016-03&rft.volume=52&rft.issue=3&rft.spage=1984&rft.epage=2008&rft.pages=1984-2008&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2015WR018230&rft_dat=%3Cproquest_cross%3E1907280138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907280138&rft_id=info:pmid/&rfr_iscdi=true