DietCam: Multiview Food Recognition Using a Multikernel SVM

Food recognition is a key component in evaluation of everyday food intakes, and its challenge is due to intraclass variation. In this paper, we present an automatic food classification method, DietCam, which specifically addresses the variation of food appearances. DietCam consists of two major comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2016-05, Vol.20 (3), p.848-855
Hauptverfasser: He, Hongsheng, Kong, Fanyu, Tan, Jindong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Food recognition is a key component in evaluation of everyday food intakes, and its challenge is due to intraclass variation. In this paper, we present an automatic food classification method, DietCam, which specifically addresses the variation of food appearances. DietCam consists of two major components, ingredient detection and food classification. Food ingredients are detected through a combination of a deformable part-based model and a texture verification model. From the detected ingredients, food categories are classified using a multiview multikernel SVM. In the experiment, DietCam presents reliability and outperformance in recognition of food with complex ingredients on a database including 15,262 food images of 55 food types.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2015.2419251