Achieving synergy between chemical oxidation and stabilization in a contaminated soil
Eight in situ solidification/stabilization (ISS) amendments were tested to promote in situ chemical oxidation (ISCO) with activated persulfate (PS) in a contaminated soil. A 3% (by weight) dose of all ISS amendments selected for this study completely activated a 1.5% dose of PS within 3 h by raising...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2016-07, Vol.154, p.590-598 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eight in situ solidification/stabilization (ISS) amendments were tested to promote in situ chemical oxidation (ISCO) with activated persulfate (PS) in a contaminated soil. A 3% (by weight) dose of all ISS amendments selected for this study completely activated a 1.5% dose of PS within 3 h by raising temperatures above 30 °C (heat activation) and/or increasing pH above 10.5 (alkaline activation). Heat is released by the reaction of CaO with water, and pH increases because this reaction produces Ca(OH)2. Heat activation is preferred because it generates 2 mol of oxidizing radicals per mole of PS, whereas alkaline activation releases only 1. The relative contribution of heat vs. alkaline activation increased with CaO content of the ISS amendment, which was reflected by enhanced contaminant oxidation with increasing CaO content, and was confirmed by comparing to controls promoting purely heat or alkaline (NaOH) activation. The test soil was contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAH), particularly naphthalene (NAP). ISS-activated PS oxidized between 47% and 84% of the BTEX & NAP, and between 13% and 33% of the higher molecular weight PAH. ISS-activated PS reduced the leachability of BTEX & NAP by 76%–91% and of the 17 PAH by 83%–96%. Combined ISCO/ISS reduced contaminant leachability far than ISCO or ISS treatments alone, demonstrating the synergy that is possible with combined remedies.
•Eight ISS amendments activated persulfate in soil by increasing temperature and/or pH.•Activated persulfate ISCO removed 47%–84% of the BTEX & NAP, and 13%–33% PAH.•ISS-activated persulfate reduced the leachability of BTEX & NAP by 76%–91% and of the 17 PAH by 83%–96%.•ISCO/ISS treatment reduced contaminant leachability far more than ISCO or ISS alone. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2016.04.010 |