Chemical amplification of magnetic field effects relevant to avian magnetoreception

Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, k B T , at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2016-04, Vol.8 (4), p.384-391
Hauptverfasser: Kattnig, Daniel R., Evans, Emrys W., Déjean, Victoire, Dodson, Charlotte A., Wallace, Mark I., Mackenzie, Stuart R., Timmel, Christiane R., Hore, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 4
container_start_page 384
container_title Nature chemistry
container_volume 8
creator Kattnig, Daniel R.
Evans, Emrys W.
Déjean, Victoire
Dodson, Charlotte A.
Wallace, Mark I.
Mackenzie, Stuart R.
Timmel, Christiane R.
Hore, P. J.
description Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, k B T , at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin–tryptophan and flavin–ascorbic acid photocycles and the closely related intramolecular flavin–tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in flavoproteins in the retina. Now, it has been demonstrated that the primary magnetic field effect on flavin photoreactions can be chemically amplified by slow radical termination reactions under conditions of continuous photoexcitation.
doi_str_mv 10.1038/nchem.2447
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790928986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790928986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-ff4054a6b31e7c3b57d8c4c6d1fff19ac8bc4a8b0d09219476c8677f90abb7013</originalsourceid><addsrcrecordid>eNqN0ctKxDAUBuAgiqOjGx9ACm5E6Zg0SZMuZfAGAy7UdUnTkzFDbybtgG9v5uIgunGVA_nOH8KP0BnBE4KpvGn0O9SThDGxh46I4DxmlGX7u5niETr2foFxyilJD9EoERgTQfkRepmGXatVFam6q6wJY2_bJmpNVKt5A73VkbFQlREYA7r3kYMKlqrpo76N1NKqZgtbBxq61fIJOjCq8nC6Pcfo7f7udfoYz54fnqa3s1jzhPaxMQxzptKCEhCaFlyUUjOdlsQYQzKlZaGZkgUucZaQjIlUy1QIk2FVFAITOkaXm9zOtR8D-D6vrddQVaqBdvA5EVnYlJlM_0EFpzLh69SLX3TRDq4JHwlK4ownUvKgrjZKu9Z7BybvnK2V-8wJzlet5OtW8lUrAZ9vI4eihnJHv2sI4HoDfLhq5uB-vPk37gvk2Zbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780952885</pqid></control><display><type>article</type><title>Chemical amplification of magnetic field effects relevant to avian magnetoreception</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Kattnig, Daniel R. ; Evans, Emrys W. ; Déjean, Victoire ; Dodson, Charlotte A. ; Wallace, Mark I. ; Mackenzie, Stuart R. ; Timmel, Christiane R. ; Hore, P. J.</creator><creatorcontrib>Kattnig, Daniel R. ; Evans, Emrys W. ; Déjean, Victoire ; Dodson, Charlotte A. ; Wallace, Mark I. ; Mackenzie, Stuart R. ; Timmel, Christiane R. ; Hore, P. J.</creatorcontrib><description>Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, k B T , at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin–tryptophan and flavin–ascorbic acid photocycles and the closely related intramolecular flavin–tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in flavoproteins in the retina. Now, it has been demonstrated that the primary magnetic field effect on flavin photoreactions can be chemically amplified by slow radical termination reactions under conditions of continuous photoexcitation.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2447</identifier><identifier>PMID: 27001735</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/638/440/56 ; 639/638/440/947 ; 639/638/440/950 ; 639/638/92/56 ; Analytical Chemistry ; Animals ; Ascorbic Acid - chemistry ; Biochemistry ; Bird migration ; Chemistry ; Chemistry/Food Science ; Cryptochromes - chemistry ; Electrons ; Flavins - chemistry ; Inorganic Chemistry ; Light ; Magnetic Fields ; Migratory birds ; Muramidase - chemistry ; Organic Chemistry ; Physical Chemistry ; Sensors ; Sensory Receptor Cells - physiology ; Thermal energy ; Tryptophan - chemistry</subject><ispartof>Nature chemistry, 2016-04, Vol.8 (4), p.384-391</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-ff4054a6b31e7c3b57d8c4c6d1fff19ac8bc4a8b0d09219476c8677f90abb7013</citedby><cites>FETCH-LOGICAL-c523t-ff4054a6b31e7c3b57d8c4c6d1fff19ac8bc4a8b0d09219476c8677f90abb7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.2447$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.2447$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27001735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kattnig, Daniel R.</creatorcontrib><creatorcontrib>Evans, Emrys W.</creatorcontrib><creatorcontrib>Déjean, Victoire</creatorcontrib><creatorcontrib>Dodson, Charlotte A.</creatorcontrib><creatorcontrib>Wallace, Mark I.</creatorcontrib><creatorcontrib>Mackenzie, Stuart R.</creatorcontrib><creatorcontrib>Timmel, Christiane R.</creatorcontrib><creatorcontrib>Hore, P. J.</creatorcontrib><title>Chemical amplification of magnetic field effects relevant to avian magnetoreception</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, k B T , at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin–tryptophan and flavin–ascorbic acid photocycles and the closely related intramolecular flavin–tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in flavoproteins in the retina. Now, it has been demonstrated that the primary magnetic field effect on flavin photoreactions can be chemically amplified by slow radical termination reactions under conditions of continuous photoexcitation.</description><subject>140/125</subject><subject>639/638/440/56</subject><subject>639/638/440/947</subject><subject>639/638/440/950</subject><subject>639/638/92/56</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Ascorbic Acid - chemistry</subject><subject>Biochemistry</subject><subject>Bird migration</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Cryptochromes - chemistry</subject><subject>Electrons</subject><subject>Flavins - chemistry</subject><subject>Inorganic Chemistry</subject><subject>Light</subject><subject>Magnetic Fields</subject><subject>Migratory birds</subject><subject>Muramidase - chemistry</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Sensors</subject><subject>Sensory Receptor Cells - physiology</subject><subject>Thermal energy</subject><subject>Tryptophan - chemistry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0ctKxDAUBuAgiqOjGx9ACm5E6Zg0SZMuZfAGAy7UdUnTkzFDbybtgG9v5uIgunGVA_nOH8KP0BnBE4KpvGn0O9SThDGxh46I4DxmlGX7u5niETr2foFxyilJD9EoERgTQfkRepmGXatVFam6q6wJY2_bJmpNVKt5A73VkbFQlREYA7r3kYMKlqrpo76N1NKqZgtbBxq61fIJOjCq8nC6Pcfo7f7udfoYz54fnqa3s1jzhPaxMQxzptKCEhCaFlyUUjOdlsQYQzKlZaGZkgUucZaQjIlUy1QIk2FVFAITOkaXm9zOtR8D-D6vrddQVaqBdvA5EVnYlJlM_0EFpzLh69SLX3TRDq4JHwlK4ownUvKgrjZKu9Z7BybvnK2V-8wJzlet5OtW8lUrAZ9vI4eihnJHv2sI4HoDfLhq5uB-vPk37gvk2Zbs</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Kattnig, Daniel R.</creator><creator>Evans, Emrys W.</creator><creator>Déjean, Victoire</creator><creator>Dodson, Charlotte A.</creator><creator>Wallace, Mark I.</creator><creator>Mackenzie, Stuart R.</creator><creator>Timmel, Christiane R.</creator><creator>Hore, P. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20160401</creationdate><title>Chemical amplification of magnetic field effects relevant to avian magnetoreception</title><author>Kattnig, Daniel R. ; Evans, Emrys W. ; Déjean, Victoire ; Dodson, Charlotte A. ; Wallace, Mark I. ; Mackenzie, Stuart R. ; Timmel, Christiane R. ; Hore, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-ff4054a6b31e7c3b57d8c4c6d1fff19ac8bc4a8b0d09219476c8677f90abb7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/125</topic><topic>639/638/440/56</topic><topic>639/638/440/947</topic><topic>639/638/440/950</topic><topic>639/638/92/56</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Ascorbic Acid - chemistry</topic><topic>Biochemistry</topic><topic>Bird migration</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Cryptochromes - chemistry</topic><topic>Electrons</topic><topic>Flavins - chemistry</topic><topic>Inorganic Chemistry</topic><topic>Light</topic><topic>Magnetic Fields</topic><topic>Migratory birds</topic><topic>Muramidase - chemistry</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Sensors</topic><topic>Sensory Receptor Cells - physiology</topic><topic>Thermal energy</topic><topic>Tryptophan - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kattnig, Daniel R.</creatorcontrib><creatorcontrib>Evans, Emrys W.</creatorcontrib><creatorcontrib>Déjean, Victoire</creatorcontrib><creatorcontrib>Dodson, Charlotte A.</creatorcontrib><creatorcontrib>Wallace, Mark I.</creatorcontrib><creatorcontrib>Mackenzie, Stuart R.</creatorcontrib><creatorcontrib>Timmel, Christiane R.</creatorcontrib><creatorcontrib>Hore, P. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kattnig, Daniel R.</au><au>Evans, Emrys W.</au><au>Déjean, Victoire</au><au>Dodson, Charlotte A.</au><au>Wallace, Mark I.</au><au>Mackenzie, Stuart R.</au><au>Timmel, Christiane R.</au><au>Hore, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical amplification of magnetic field effects relevant to avian magnetoreception</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>8</volume><issue>4</issue><spage>384</spage><epage>391</epage><pages>384-391</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, k B T , at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin–tryptophan and flavin–ascorbic acid photocycles and the closely related intramolecular flavin–tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in flavoproteins in the retina. Now, it has been demonstrated that the primary magnetic field effect on flavin photoreactions can be chemically amplified by slow radical termination reactions under conditions of continuous photoexcitation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27001735</pmid><doi>10.1038/nchem.2447</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2016-04, Vol.8 (4), p.384-391
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_1790928986
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 140/125
639/638/440/56
639/638/440/947
639/638/440/950
639/638/92/56
Analytical Chemistry
Animals
Ascorbic Acid - chemistry
Biochemistry
Bird migration
Chemistry
Chemistry/Food Science
Cryptochromes - chemistry
Electrons
Flavins - chemistry
Inorganic Chemistry
Light
Magnetic Fields
Migratory birds
Muramidase - chemistry
Organic Chemistry
Physical Chemistry
Sensors
Sensory Receptor Cells - physiology
Thermal energy
Tryptophan - chemistry
title Chemical amplification of magnetic field effects relevant to avian magnetoreception
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20amplification%20of%20magnetic%20field%20effects%20relevant%20to%20avian%20magnetoreception&rft.jtitle=Nature%20chemistry&rft.au=Kattnig,%20Daniel%20R.&rft.date=2016-04-01&rft.volume=8&rft.issue=4&rft.spage=384&rft.epage=391&rft.pages=384-391&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2447&rft_dat=%3Cproquest_cross%3E1790928986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780952885&rft_id=info:pmid/27001735&rfr_iscdi=true