Chemical amplification of magnetic field effects relevant to avian magnetoreception
Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, k B T , at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the r...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2016-04, Vol.8 (4), p.384-391 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 391 |
---|---|
container_issue | 4 |
container_start_page | 384 |
container_title | Nature chemistry |
container_volume | 8 |
creator | Kattnig, Daniel R. Evans, Emrys W. Déjean, Victoire Dodson, Charlotte A. Wallace, Mark I. Mackenzie, Stuart R. Timmel, Christiane R. Hore, P. J. |
description | Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy,
k
B
T
, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin–tryptophan and flavin–ascorbic acid photocycles and the closely related intramolecular flavin–tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.
Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in flavoproteins in the retina. Now, it has been demonstrated that the primary magnetic field effect on flavin photoreactions can be chemically amplified by slow radical termination reactions under conditions of continuous photoexcitation. |
doi_str_mv | 10.1038/nchem.2447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790928986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790928986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-ff4054a6b31e7c3b57d8c4c6d1fff19ac8bc4a8b0d09219476c8677f90abb7013</originalsourceid><addsrcrecordid>eNqN0ctKxDAUBuAgiqOjGx9ACm5E6Zg0SZMuZfAGAy7UdUnTkzFDbybtgG9v5uIgunGVA_nOH8KP0BnBE4KpvGn0O9SThDGxh46I4DxmlGX7u5niETr2foFxyilJD9EoERgTQfkRepmGXatVFam6q6wJY2_bJmpNVKt5A73VkbFQlREYA7r3kYMKlqrpo76N1NKqZgtbBxq61fIJOjCq8nC6Pcfo7f7udfoYz54fnqa3s1jzhPaxMQxzptKCEhCaFlyUUjOdlsQYQzKlZaGZkgUucZaQjIlUy1QIk2FVFAITOkaXm9zOtR8D-D6vrddQVaqBdvA5EVnYlJlM_0EFpzLh69SLX3TRDq4JHwlK4ownUvKgrjZKu9Z7BybvnK2V-8wJzlet5OtW8lUrAZ9vI4eihnJHv2sI4HoDfLhq5uB-vPk37gvk2Zbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780952885</pqid></control><display><type>article</type><title>Chemical amplification of magnetic field effects relevant to avian magnetoreception</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Kattnig, Daniel R. ; Evans, Emrys W. ; Déjean, Victoire ; Dodson, Charlotte A. ; Wallace, Mark I. ; Mackenzie, Stuart R. ; Timmel, Christiane R. ; Hore, P. J.</creator><creatorcontrib>Kattnig, Daniel R. ; Evans, Emrys W. ; Déjean, Victoire ; Dodson, Charlotte A. ; Wallace, Mark I. ; Mackenzie, Stuart R. ; Timmel, Christiane R. ; Hore, P. J.</creatorcontrib><description>Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy,
k
B
T
, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin–tryptophan and flavin–ascorbic acid photocycles and the closely related intramolecular flavin–tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.
Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in flavoproteins in the retina. Now, it has been demonstrated that the primary magnetic field effect on flavin photoreactions can be chemically amplified by slow radical termination reactions under conditions of continuous photoexcitation.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2447</identifier><identifier>PMID: 27001735</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/638/440/56 ; 639/638/440/947 ; 639/638/440/950 ; 639/638/92/56 ; Analytical Chemistry ; Animals ; Ascorbic Acid - chemistry ; Biochemistry ; Bird migration ; Chemistry ; Chemistry/Food Science ; Cryptochromes - chemistry ; Electrons ; Flavins - chemistry ; Inorganic Chemistry ; Light ; Magnetic Fields ; Migratory birds ; Muramidase - chemistry ; Organic Chemistry ; Physical Chemistry ; Sensors ; Sensory Receptor Cells - physiology ; Thermal energy ; Tryptophan - chemistry</subject><ispartof>Nature chemistry, 2016-04, Vol.8 (4), p.384-391</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-ff4054a6b31e7c3b57d8c4c6d1fff19ac8bc4a8b0d09219476c8677f90abb7013</citedby><cites>FETCH-LOGICAL-c523t-ff4054a6b31e7c3b57d8c4c6d1fff19ac8bc4a8b0d09219476c8677f90abb7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.2447$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.2447$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27001735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kattnig, Daniel R.</creatorcontrib><creatorcontrib>Evans, Emrys W.</creatorcontrib><creatorcontrib>Déjean, Victoire</creatorcontrib><creatorcontrib>Dodson, Charlotte A.</creatorcontrib><creatorcontrib>Wallace, Mark I.</creatorcontrib><creatorcontrib>Mackenzie, Stuart R.</creatorcontrib><creatorcontrib>Timmel, Christiane R.</creatorcontrib><creatorcontrib>Hore, P. J.</creatorcontrib><title>Chemical amplification of magnetic field effects relevant to avian magnetoreception</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy,
k
B
T
, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin–tryptophan and flavin–ascorbic acid photocycles and the closely related intramolecular flavin–tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.
Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in flavoproteins in the retina. Now, it has been demonstrated that the primary magnetic field effect on flavin photoreactions can be chemically amplified by slow radical termination reactions under conditions of continuous photoexcitation.</description><subject>140/125</subject><subject>639/638/440/56</subject><subject>639/638/440/947</subject><subject>639/638/440/950</subject><subject>639/638/92/56</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Ascorbic Acid - chemistry</subject><subject>Biochemistry</subject><subject>Bird migration</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Cryptochromes - chemistry</subject><subject>Electrons</subject><subject>Flavins - chemistry</subject><subject>Inorganic Chemistry</subject><subject>Light</subject><subject>Magnetic Fields</subject><subject>Migratory birds</subject><subject>Muramidase - chemistry</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Sensors</subject><subject>Sensory Receptor Cells - physiology</subject><subject>Thermal energy</subject><subject>Tryptophan - chemistry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0ctKxDAUBuAgiqOjGx9ACm5E6Zg0SZMuZfAGAy7UdUnTkzFDbybtgG9v5uIgunGVA_nOH8KP0BnBE4KpvGn0O9SThDGxh46I4DxmlGX7u5niETr2foFxyilJD9EoERgTQfkRepmGXatVFam6q6wJY2_bJmpNVKt5A73VkbFQlREYA7r3kYMKlqrpo76N1NKqZgtbBxq61fIJOjCq8nC6Pcfo7f7udfoYz54fnqa3s1jzhPaxMQxzptKCEhCaFlyUUjOdlsQYQzKlZaGZkgUucZaQjIlUy1QIk2FVFAITOkaXm9zOtR8D-D6vrddQVaqBdvA5EVnYlJlM_0EFpzLh69SLX3TRDq4JHwlK4ownUvKgrjZKu9Z7BybvnK2V-8wJzlet5OtW8lUrAZ9vI4eihnJHv2sI4HoDfLhq5uB-vPk37gvk2Zbs</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Kattnig, Daniel R.</creator><creator>Evans, Emrys W.</creator><creator>Déjean, Victoire</creator><creator>Dodson, Charlotte A.</creator><creator>Wallace, Mark I.</creator><creator>Mackenzie, Stuart R.</creator><creator>Timmel, Christiane R.</creator><creator>Hore, P. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20160401</creationdate><title>Chemical amplification of magnetic field effects relevant to avian magnetoreception</title><author>Kattnig, Daniel R. ; Evans, Emrys W. ; Déjean, Victoire ; Dodson, Charlotte A. ; Wallace, Mark I. ; Mackenzie, Stuart R. ; Timmel, Christiane R. ; Hore, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-ff4054a6b31e7c3b57d8c4c6d1fff19ac8bc4a8b0d09219476c8677f90abb7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/125</topic><topic>639/638/440/56</topic><topic>639/638/440/947</topic><topic>639/638/440/950</topic><topic>639/638/92/56</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Ascorbic Acid - chemistry</topic><topic>Biochemistry</topic><topic>Bird migration</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Cryptochromes - chemistry</topic><topic>Electrons</topic><topic>Flavins - chemistry</topic><topic>Inorganic Chemistry</topic><topic>Light</topic><topic>Magnetic Fields</topic><topic>Migratory birds</topic><topic>Muramidase - chemistry</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Sensors</topic><topic>Sensory Receptor Cells - physiology</topic><topic>Thermal energy</topic><topic>Tryptophan - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kattnig, Daniel R.</creatorcontrib><creatorcontrib>Evans, Emrys W.</creatorcontrib><creatorcontrib>Déjean, Victoire</creatorcontrib><creatorcontrib>Dodson, Charlotte A.</creatorcontrib><creatorcontrib>Wallace, Mark I.</creatorcontrib><creatorcontrib>Mackenzie, Stuart R.</creatorcontrib><creatorcontrib>Timmel, Christiane R.</creatorcontrib><creatorcontrib>Hore, P. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kattnig, Daniel R.</au><au>Evans, Emrys W.</au><au>Déjean, Victoire</au><au>Dodson, Charlotte A.</au><au>Wallace, Mark I.</au><au>Mackenzie, Stuart R.</au><au>Timmel, Christiane R.</au><au>Hore, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical amplification of magnetic field effects relevant to avian magnetoreception</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>8</volume><issue>4</issue><spage>384</spage><epage>391</epage><pages>384-391</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy,
k
B
T
, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin–tryptophan and flavin–ascorbic acid photocycles and the closely related intramolecular flavin–tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.
Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in flavoproteins in the retina. Now, it has been demonstrated that the primary magnetic field effect on flavin photoreactions can be chemically amplified by slow radical termination reactions under conditions of continuous photoexcitation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27001735</pmid><doi>10.1038/nchem.2447</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2016-04, Vol.8 (4), p.384-391 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1790928986 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 140/125 639/638/440/56 639/638/440/947 639/638/440/950 639/638/92/56 Analytical Chemistry Animals Ascorbic Acid - chemistry Biochemistry Bird migration Chemistry Chemistry/Food Science Cryptochromes - chemistry Electrons Flavins - chemistry Inorganic Chemistry Light Magnetic Fields Migratory birds Muramidase - chemistry Organic Chemistry Physical Chemistry Sensors Sensory Receptor Cells - physiology Thermal energy Tryptophan - chemistry |
title | Chemical amplification of magnetic field effects relevant to avian magnetoreception |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20amplification%20of%20magnetic%20field%20effects%20relevant%20to%20avian%20magnetoreception&rft.jtitle=Nature%20chemistry&rft.au=Kattnig,%20Daniel%20R.&rft.date=2016-04-01&rft.volume=8&rft.issue=4&rft.spage=384&rft.epage=391&rft.pages=384-391&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2447&rft_dat=%3Cproquest_cross%3E1790928986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780952885&rft_id=info:pmid/27001735&rfr_iscdi=true |