Raft-based interactions of gangliosides with a GPI-anchored receptor

Monitoring new fluorescent ganglioside analogs at a single-molecule level suggests that gangliosides associate dynamically with GPI-anchored protein monomers, transient homodimer rafts, and clustered signaling rafts in a cholesterol-dependent manner. Gangliosides, glycosphingolipids containing one o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2016-06, Vol.12 (6), p.402-410
Hauptverfasser: Komura, Naoko, Suzuki, Kenichi G N, Ando, Hiromune, Konishi, Miku, Koikeda, Machi, Imamura, Akihiro, Chadda, Rahul, Fujiwara, Takahiro K, Tsuboi, Hisae, Sheng, Ren, Cho, Wonhwa, Furukawa, Koichi, Furukawa, Keiko, Yamauchi, Yoshio, Ishida, Hideharu, Kusumi, Akihiro, Kiso, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 6
container_start_page 402
container_title Nature chemical biology
container_volume 12
creator Komura, Naoko
Suzuki, Kenichi G N
Ando, Hiromune
Konishi, Miku
Koikeda, Machi
Imamura, Akihiro
Chadda, Rahul
Fujiwara, Takahiro K
Tsuboi, Hisae
Sheng, Ren
Cho, Wonhwa
Furukawa, Koichi
Furukawa, Keiko
Yamauchi, Yoshio
Ishida, Hideharu
Kusumi, Akihiro
Kiso, Makoto
description Monitoring new fluorescent ganglioside analogs at a single-molecule level suggests that gangliosides associate dynamically with GPI-anchored protein monomers, transient homodimer rafts, and clustered signaling rafts in a cholesterol-dependent manner. Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.
doi_str_mv 10.1038/nchembio.2059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790454125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4061083841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-21cc813023b889dd20055a76c74f883478abd3b9e63a3d3fb06a378c5b5388a63</originalsourceid><addsrcrecordid>eNpt0M1LwzAYBvAgipvTo1cpePHSmTQfTY6y6RwMFNFzSdJ0y2ibmbSI_70Z-0DEUwL55XlfHgCuERwjiPl9q1emUdaNM0jFCRgiSrOUECZOj3cKB-AihDWEmDHEz8EgyyHBiIshmL7JqkuVDKZMbNsZL3VnXRsSVyVL2S5r64ItTUi-bLdKZDJ7nacyznQ-fvBGm03n_CU4q2QdzNX-HIGPp8f3yXO6eJnNJw-LVGMGuzRDWnOEYYYV56IsMwgplTnTOak4xyTnUpVYCcOwxCWuFGQS51xTRTHnkuERuNvlbrz77E3oisYGbepatsb1oUC5gIQSlNFIb__Qtet9G7eLigueY8JFVOlOae9C8KYqNt420n8XCBbbeotDvcW23uhv9qm9akx51Ic-IxjvQIhP7dL4X2P_TfwBr7qFnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789873489</pqid></control><display><type>article</type><title>Raft-based interactions of gangliosides with a GPI-anchored receptor</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Komura, Naoko ; Suzuki, Kenichi G N ; Ando, Hiromune ; Konishi, Miku ; Koikeda, Machi ; Imamura, Akihiro ; Chadda, Rahul ; Fujiwara, Takahiro K ; Tsuboi, Hisae ; Sheng, Ren ; Cho, Wonhwa ; Furukawa, Koichi ; Furukawa, Keiko ; Yamauchi, Yoshio ; Ishida, Hideharu ; Kusumi, Akihiro ; Kiso, Makoto</creator><creatorcontrib>Komura, Naoko ; Suzuki, Kenichi G N ; Ando, Hiromune ; Konishi, Miku ; Koikeda, Machi ; Imamura, Akihiro ; Chadda, Rahul ; Fujiwara, Takahiro K ; Tsuboi, Hisae ; Sheng, Ren ; Cho, Wonhwa ; Furukawa, Koichi ; Furukawa, Keiko ; Yamauchi, Yoshio ; Ishida, Hideharu ; Kusumi, Akihiro ; Kiso, Makoto</creatorcontrib><description>Monitoring new fluorescent ganglioside analogs at a single-molecule level suggests that gangliosides associate dynamically with GPI-anchored protein monomers, transient homodimer rafts, and clustered signaling rafts in a cholesterol-dependent manner. Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.2059</identifier><identifier>PMID: 27043189</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/34 ; 14/63 ; 631/57/2265 ; 631/92/287 ; 631/92/314 ; 639/638/403 ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Biophysics ; CD59 Antigens - analysis ; CD59 Antigens - chemistry ; CD59 Antigens - metabolism ; Cell Biology ; Chemistry ; Chemistry/Food Science ; Cholesterol ; Diffusion ; Fluorescence ; Gangliosides - analysis ; Gangliosides - chemistry ; Gangliosides - metabolism ; Glycosylphosphatidylinositols - metabolism ; Humans ; Lipids ; Membrane Microdomains - chemistry ; Membrane Microdomains - metabolism ; Membranes ; Molecular Conformation ; Organic chemicals ; Physiology ; Plasma ; Protein Binding ; Time Factors</subject><ispartof>Nature chemical biology, 2016-06, Vol.12 (6), p.402-410</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-21cc813023b889dd20055a76c74f883478abd3b9e63a3d3fb06a378c5b5388a63</citedby><cites>FETCH-LOGICAL-c360t-21cc813023b889dd20055a76c74f883478abd3b9e63a3d3fb06a378c5b5388a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.2059$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.2059$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27043189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Komura, Naoko</creatorcontrib><creatorcontrib>Suzuki, Kenichi G N</creatorcontrib><creatorcontrib>Ando, Hiromune</creatorcontrib><creatorcontrib>Konishi, Miku</creatorcontrib><creatorcontrib>Koikeda, Machi</creatorcontrib><creatorcontrib>Imamura, Akihiro</creatorcontrib><creatorcontrib>Chadda, Rahul</creatorcontrib><creatorcontrib>Fujiwara, Takahiro K</creatorcontrib><creatorcontrib>Tsuboi, Hisae</creatorcontrib><creatorcontrib>Sheng, Ren</creatorcontrib><creatorcontrib>Cho, Wonhwa</creatorcontrib><creatorcontrib>Furukawa, Koichi</creatorcontrib><creatorcontrib>Furukawa, Keiko</creatorcontrib><creatorcontrib>Yamauchi, Yoshio</creatorcontrib><creatorcontrib>Ishida, Hideharu</creatorcontrib><creatorcontrib>Kusumi, Akihiro</creatorcontrib><creatorcontrib>Kiso, Makoto</creatorcontrib><title>Raft-based interactions of gangliosides with a GPI-anchored receptor</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Monitoring new fluorescent ganglioside analogs at a single-molecule level suggests that gangliosides associate dynamically with GPI-anchored protein monomers, transient homodimer rafts, and clustered signaling rafts in a cholesterol-dependent manner. Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.</description><subject>14/34</subject><subject>14/63</subject><subject>631/57/2265</subject><subject>631/92/287</subject><subject>631/92/314</subject><subject>639/638/403</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Biophysics</subject><subject>CD59 Antigens - analysis</subject><subject>CD59 Antigens - chemistry</subject><subject>CD59 Antigens - metabolism</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Cholesterol</subject><subject>Diffusion</subject><subject>Fluorescence</subject><subject>Gangliosides - analysis</subject><subject>Gangliosides - chemistry</subject><subject>Gangliosides - metabolism</subject><subject>Glycosylphosphatidylinositols - metabolism</subject><subject>Humans</subject><subject>Lipids</subject><subject>Membrane Microdomains - chemistry</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membranes</subject><subject>Molecular Conformation</subject><subject>Organic chemicals</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Protein Binding</subject><subject>Time Factors</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0M1LwzAYBvAgipvTo1cpePHSmTQfTY6y6RwMFNFzSdJ0y2ibmbSI_70Z-0DEUwL55XlfHgCuERwjiPl9q1emUdaNM0jFCRgiSrOUECZOj3cKB-AihDWEmDHEz8EgyyHBiIshmL7JqkuVDKZMbNsZL3VnXRsSVyVL2S5r64ItTUi-bLdKZDJ7nacyznQ-fvBGm03n_CU4q2QdzNX-HIGPp8f3yXO6eJnNJw-LVGMGuzRDWnOEYYYV56IsMwgplTnTOak4xyTnUpVYCcOwxCWuFGQS51xTRTHnkuERuNvlbrz77E3oisYGbepatsb1oUC5gIQSlNFIb__Qtet9G7eLigueY8JFVOlOae9C8KYqNt420n8XCBbbeotDvcW23uhv9qm9akx51Ic-IxjvQIhP7dL4X2P_TfwBr7qFnQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Komura, Naoko</creator><creator>Suzuki, Kenichi G N</creator><creator>Ando, Hiromune</creator><creator>Konishi, Miku</creator><creator>Koikeda, Machi</creator><creator>Imamura, Akihiro</creator><creator>Chadda, Rahul</creator><creator>Fujiwara, Takahiro K</creator><creator>Tsuboi, Hisae</creator><creator>Sheng, Ren</creator><creator>Cho, Wonhwa</creator><creator>Furukawa, Koichi</creator><creator>Furukawa, Keiko</creator><creator>Yamauchi, Yoshio</creator><creator>Ishida, Hideharu</creator><creator>Kusumi, Akihiro</creator><creator>Kiso, Makoto</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>Raft-based interactions of gangliosides with a GPI-anchored receptor</title><author>Komura, Naoko ; Suzuki, Kenichi G N ; Ando, Hiromune ; Konishi, Miku ; Koikeda, Machi ; Imamura, Akihiro ; Chadda, Rahul ; Fujiwara, Takahiro K ; Tsuboi, Hisae ; Sheng, Ren ; Cho, Wonhwa ; Furukawa, Koichi ; Furukawa, Keiko ; Yamauchi, Yoshio ; Ishida, Hideharu ; Kusumi, Akihiro ; Kiso, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-21cc813023b889dd20055a76c74f883478abd3b9e63a3d3fb06a378c5b5388a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>14/34</topic><topic>14/63</topic><topic>631/57/2265</topic><topic>631/92/287</topic><topic>631/92/314</topic><topic>639/638/403</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Biophysics</topic><topic>CD59 Antigens - analysis</topic><topic>CD59 Antigens - chemistry</topic><topic>CD59 Antigens - metabolism</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Cholesterol</topic><topic>Diffusion</topic><topic>Fluorescence</topic><topic>Gangliosides - analysis</topic><topic>Gangliosides - chemistry</topic><topic>Gangliosides - metabolism</topic><topic>Glycosylphosphatidylinositols - metabolism</topic><topic>Humans</topic><topic>Lipids</topic><topic>Membrane Microdomains - chemistry</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membranes</topic><topic>Molecular Conformation</topic><topic>Organic chemicals</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Protein Binding</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komura, Naoko</creatorcontrib><creatorcontrib>Suzuki, Kenichi G N</creatorcontrib><creatorcontrib>Ando, Hiromune</creatorcontrib><creatorcontrib>Konishi, Miku</creatorcontrib><creatorcontrib>Koikeda, Machi</creatorcontrib><creatorcontrib>Imamura, Akihiro</creatorcontrib><creatorcontrib>Chadda, Rahul</creatorcontrib><creatorcontrib>Fujiwara, Takahiro K</creatorcontrib><creatorcontrib>Tsuboi, Hisae</creatorcontrib><creatorcontrib>Sheng, Ren</creatorcontrib><creatorcontrib>Cho, Wonhwa</creatorcontrib><creatorcontrib>Furukawa, Koichi</creatorcontrib><creatorcontrib>Furukawa, Keiko</creatorcontrib><creatorcontrib>Yamauchi, Yoshio</creatorcontrib><creatorcontrib>Ishida, Hideharu</creatorcontrib><creatorcontrib>Kusumi, Akihiro</creatorcontrib><creatorcontrib>Kiso, Makoto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komura, Naoko</au><au>Suzuki, Kenichi G N</au><au>Ando, Hiromune</au><au>Konishi, Miku</au><au>Koikeda, Machi</au><au>Imamura, Akihiro</au><au>Chadda, Rahul</au><au>Fujiwara, Takahiro K</au><au>Tsuboi, Hisae</au><au>Sheng, Ren</au><au>Cho, Wonhwa</au><au>Furukawa, Koichi</au><au>Furukawa, Keiko</au><au>Yamauchi, Yoshio</au><au>Ishida, Hideharu</au><au>Kusumi, Akihiro</au><au>Kiso, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raft-based interactions of gangliosides with a GPI-anchored receptor</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>12</volume><issue>6</issue><spage>402</spage><epage>410</epage><pages>402-410</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Monitoring new fluorescent ganglioside analogs at a single-molecule level suggests that gangliosides associate dynamically with GPI-anchored protein monomers, transient homodimer rafts, and clustered signaling rafts in a cholesterol-dependent manner. Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27043189</pmid><doi>10.1038/nchembio.2059</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2016-06, Vol.12 (6), p.402-410
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_miscellaneous_1790454125
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 14/34
14/63
631/57/2265
631/92/287
631/92/314
639/638/403
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Biophysics
CD59 Antigens - analysis
CD59 Antigens - chemistry
CD59 Antigens - metabolism
Cell Biology
Chemistry
Chemistry/Food Science
Cholesterol
Diffusion
Fluorescence
Gangliosides - analysis
Gangliosides - chemistry
Gangliosides - metabolism
Glycosylphosphatidylinositols - metabolism
Humans
Lipids
Membrane Microdomains - chemistry
Membrane Microdomains - metabolism
Membranes
Molecular Conformation
Organic chemicals
Physiology
Plasma
Protein Binding
Time Factors
title Raft-based interactions of gangliosides with a GPI-anchored receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raft-based%20interactions%20of%20gangliosides%20with%20a%20GPI-anchored%20receptor&rft.jtitle=Nature%20chemical%20biology&rft.au=Komura,%20Naoko&rft.date=2016-06-01&rft.volume=12&rft.issue=6&rft.spage=402&rft.epage=410&rft.pages=402-410&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.2059&rft_dat=%3Cproquest_cross%3E4061083841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789873489&rft_id=info:pmid/27043189&rfr_iscdi=true