Raft-based interactions of gangliosides with a GPI-anchored receptor

Monitoring new fluorescent ganglioside analogs at a single-molecule level suggests that gangliosides associate dynamically with GPI-anchored protein monomers, transient homodimer rafts, and clustered signaling rafts in a cholesterol-dependent manner. Gangliosides, glycosphingolipids containing one o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2016-06, Vol.12 (6), p.402-410
Hauptverfasser: Komura, Naoko, Suzuki, Kenichi G N, Ando, Hiromune, Konishi, Miku, Koikeda, Machi, Imamura, Akihiro, Chadda, Rahul, Fujiwara, Takahiro K, Tsuboi, Hisae, Sheng, Ren, Cho, Wonhwa, Furukawa, Koichi, Furukawa, Keiko, Yamauchi, Yoshio, Ishida, Hideharu, Kusumi, Akihiro, Kiso, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monitoring new fluorescent ganglioside analogs at a single-molecule level suggests that gangliosides associate dynamically with GPI-anchored protein monomers, transient homodimer rafts, and clustered signaling rafts in a cholesterol-dependent manner. Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.
ISSN:1552-4450
1552-4469
DOI:10.1038/nchembio.2059