Cytology of cork layer formation of citrus and limited growth of Elsinoe fawcettii in scab lesions

Ultrastructural aspects of host-parasite interactions were investigated in fruits and leaves of citrus (satsuma mandarin) infected with Elsinoe fawcettii. Fungal infection induced host tissues to form cork layers bordering the necrotic areas below the infected sites. The cork layers were composed of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of plant pathology 2004-02, Vol.110 (2), p.129-138
Hauptverfasser: Kim, K.W, Hyun , J.W, Park, E.W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrastructural aspects of host-parasite interactions were investigated in fruits and leaves of citrus (satsuma mandarin) infected with Elsinoe fawcettii. Fungal infection induced host tissues to form cork layers bordering the necrotic areas below the infected sites. The cork layers were composed of compact host cells with convoluted cell walls and alternating lamellations, indicating ligno-suberized tissues in the wound periderm. No host tissues below the cork layers were invaded by hyphae. Hyphae grew intercellularly and intracellularly, often causing hypertrophy and compartmentalization of infected host cells. Also, host cells adjacent to invading hyphae showed accumulation of electron-dense materials and the formation of host cell wall protuberances in intercellular spaces. Hyphae had concentric bodies that showed an electron-transparent core surrounded by an electron-dense layer with radiating filamentous structures on their surface. One or more intrahyphal hyphae were found in the cytoplasm of intercellular or intracellular hyphae. These results suggest that the ligno-suberized cork layers in the wound periderm of citrus act as a protective barrier, which leads to restricted growth of E. fawcettii in bordered scab lesions. The fungus is thought to form concentric bodies and intrahyphal hyphae as a survival mechanism against the water- and nutrient-deficient environments that occur in the cork layers of necrotic host parts.
ISSN:0929-1873
1573-8469
DOI:10.1023/B:EJPP.0000015330.21280.4c