Analysis of argentinated peptide complexes using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: Peptide = oxytocin, arg(8) -vasopressin, bradykinin, bombesin, somatostatin, neurotensin

The increased use of silver nanoparticles (AgNPs) for various biological applications, and over-expression of various peptide receptors in different tumors/cancer cells, necessitate the need for dedicated investigations on the intrinsic binding ability of Ag with various biologically important pepti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid communications in mass spectrometry 2016-06, Vol.30 (11), p.1313-1322
Hauptverfasser: Gupta, Shyam L, Dhiman, Vikas, Jayasekharan, T, Sahoo, N K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increased use of silver nanoparticles (AgNPs) for various biological applications, and over-expression of various peptide receptors in different tumors/cancer cells, necessitate the need for dedicated investigations on the intrinsic binding ability of Ag with various biologically important peptides for better understanding of AgNPs-peptide interactions and for the future development of contrasting agents as well as drugs for imaging/biomedical applications. The [M+(Ag)n ](+) complexes are prepared and characterized using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Silver complexes of the peptides [M+(Ag)n ](+) , where M = oxytocin, arg(8) -vasopressin, bradykinin, bombesin, somatostatin, and neurotensin, have been investigated for their intrinsic Ag(+) -binding ability. Unusual binding of up to seven Ag(+) with these small peptides is observed. The mass spectra show n = 1-5 for bombesin and somatostatin, n = 1-6 for bradykinin and arg(8) -vasopressin, and n = 1-7 for oxytocin and neurotensin. In addition, oxytocin and arg(8) -vasopressin show the formation of dimers and their complexes [M2 +(Ag)n ](+) with n = 1-8 and n = 1-5, respectively. The possible amino acid residues responsible for Ag(+) binding in each peptide have been identified on the basis of density functional theory (DFT)-calculated binding energy values of Ag(+) towards individual amino acids. Mass spectrometric evidence indicates that the peptides, viz., oxytocin, arg(8) -vasopressin, bradykinin, bombesin, somatostatin, and neurotensin, show greater affinity for Ag(+) . Hence, they may be used as carriers for AgNPs in targeted drug delivery as well as an alternative for iodinated contrasting agents in dual energy X-ray imaging techniques. Radio-labeled Ag with these peptides can also be used in radio-pharmaceuticals for diagnostic and therapeutic applications. Copyright © 2016 John Wiley & Sons, Ltd.
ISSN:1097-0231
DOI:10.1002/rcm.7562