Computer Modeling of Halogen Bonds and Other σ‑Hole Interactions
In the field of noncovalent interactions a new paradigm has recently become popular. It stems from the analysis of molecular electrostatic potentials and introduces a label, which has recently attracted enormous attention. The label is σ-hole, and it was first used in connection with halogens. It in...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2016-05, Vol.116 (9), p.5155-5187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the field of noncovalent interactions a new paradigm has recently become popular. It stems from the analysis of molecular electrostatic potentials and introduces a label, which has recently attracted enormous attention. The label is σ-hole, and it was first used in connection with halogens. It initiated a renaissance of interest in halogenated compounds, and later on, when found also on other groups of atoms (chalcogens, pnicogens, tetrels and aerogens), it resulted in a new direction of research of intermolecular interactions. In this review, we summarize advances from about the last 10 years in understanding those interactions related to σ-hole. We pay particular attention to theoretical and computational techniques, which play a crucial role in the field. |
---|---|
ISSN: | 0009-2665 1520-6890 |
DOI: | 10.1021/acs.chemrev.5b00560 |