JunD Regulates Transcription of the Tissue Inhibitor of Metalloproteinases-1 and Interleukin-6 Genes in Activated Hepatic Stellate Cells

Activation of hepatic stellate cells (HSCs) to a myofibroblast-like phenotype is the pivotal event in hepatic wound healing and fibrosis. Rat HSCs activated in vitro express JunD, Fra2, and FosB as the predominant AP-1 DNA-binding proteins, and all three associate with an AP-1 sequence that is essen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-06, Vol.276 (26), p.24414-24421
Hauptverfasser: Smart, David E., Vincent, Karen J., Arthur, Michael J.P., Eickelberg, Oliver, Castellazzi, Marc, Mann, Jelena, Mann, Derek A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activation of hepatic stellate cells (HSCs) to a myofibroblast-like phenotype is the pivotal event in hepatic wound healing and fibrosis. Rat HSCs activated in vitro express JunD, Fra2, and FosB as the predominant AP-1 DNA-binding proteins, and all three associate with an AP-1 sequence that is essential for activity of the tissue inhibitor of metalloproteinases-1 (TIMP-1) promoter. In this study, we used expression vectors for wild-type, dominant-negative, and forced homodimeric (Jun/eb1 chimeric factors) forms of JunD and other Fos and Jun proteins to determine the requirement for JunD in the transcriptional regulation of the TIMP-1 and interleukin-6 (IL-6) genes. JunD activity was required for TIMP-1 gene promoter activity, whereas overexpression of Fra2 or FosB caused a repression of promoter activity. The ability of homodimeric JunD/eb1 to elevate TIMP-1 promoter activity supports a role for JunD homodimers as the major AP-1-dependent transactivators of the TIMP-1 gene. IL-6 promoter activity was induced upon activation of HSCs and also required JunD activity; however, expression of JunD/eb1 homodimers resulted in transcriptional repression. Mutagenesis of the IL-6 promoter showed that an AP-1 DNA-binding site previously reported to be an activator of transcription in fibroblasts functions as a suppressor of promoter activity in HSCs. We conclude that JunD activates IL-6 gene transcription as a heterodimer and operates at an alternative DNA-binding site in the promoter. The relevance of these findings to events occurring in the injured liver was addressed by showing that AP-1 DNA-binding complexes are induced during HSC activation and contain JunD as the predominant Jun family protein. JunD is therefore an important transcriptional regulator of genes responsive to Jun homo- and heterodimers in activated HSCs.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M101840200