Engineering of Alfalfa mosaic virus RNA 3 into an expression vector
RNA 3 of alfalfa mosaic virus (AMV) encodes the 5'-proximal movement protein (MP) gene and the 3'-proximal coat protein (CP) gene which is expressed from a subgenomic RNA. Several strategies were explored to use this RNA as a vector for expression of the green fluorescent protein (GFP) in...
Gespeichert in:
Veröffentlicht in: | Archives of virology 2001-01, Vol.146 (5), p.923-939 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RNA 3 of alfalfa mosaic virus (AMV) encodes the 5'-proximal movement protein (MP) gene and the 3'-proximal coat protein (CP) gene which is expressed from a subgenomic RNA. Several strategies were explored to use this RNA as a vector for expression of the green fluorescent protein (GFP) in Nicotiana tabaccum plants expressing the viral polymerase proteins P1 and P2 (P12 plants). Insertion of a subgenomic promoter (sgp)-GFP cassette between the CP gene and the 3'-untranslated region (UTR) interfered with RNA accumulation in protoplasts, indicating that cis-acting sequences required for replication were disrupted. When GFP was fused to the N-terminus of MP or CP, the chimeric RNAs accumulated in protoplasts but cell-to-cell movement in plants was blocked. Insertion of a GFP-sgp cassette immediately upstream of the CP gene caused a hypersensitive host response. However, insertion of a GFP-sgp cassette upstream of the MP gene did not affect symptom formation and yielded a vector that expressed GFP in inoculated but not in the systemic leaves of both P12 tobacco and non-transgenic N. benthamina plants. When the size of the GFP gene was reduced from 700 to 300 nucleotides, virus infection was observed in the non-inoculated leaves. Analysis of the progeny of some chimera revealed novel data on replication, encapsidation and recombination of AMV RNA 3. |
---|---|
ISSN: | 0304-8608 1432-8798 |
DOI: | 10.1007/s007050170125 |