A Multi-Task Learning Framework for Head Pose Estimation under Target Motion

Recently, head pose estimation (HPE) from low-resolution surveillance data has gained in importance. However, monocular and multi-view HPE approaches still work poorly under target motion, as facial appearance distorts owing to camera perspective and scale changes when a person moves around. To this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2016-06, Vol.38 (6), p.1070-1083
Hauptverfasser: Yan Yan, Ricci, Elisa, Subramanian, Ramanathan, Gaowen Liu, Lanz, Oswald, Sebe, Nicu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, head pose estimation (HPE) from low-resolution surveillance data has gained in importance. However, monocular and multi-view HPE approaches still work poorly under target motion, as facial appearance distorts owing to camera perspective and scale changes when a person moves around. To this end, we propose FEGA-MTL, a novel framework based on Multi-Task Learning (MTL) for classifying the head pose of a person who moves freely in an environment monitored by multiple, large field-of-view surveillance cameras. Upon partitioning the monitored scene into a dense uniform spatial grid, FEGA-MTL simultaneously clusters grid partitions into regions with similar facial appearance, while learning region-specific head pose classifiers. In the learning phase, guided by two graphs which a-priori model the similarity among (1) grid partitions based on camera geometry and (2) head pose classes, FEGA-MTL derives the optimal scene partitioning and associated pose classifiers. Upon determining the target's position using a person tracker at test time, the corresponding region-specific classifier is invoked for HPE. The FEGA-MTL framework naturally extends to a weakly supervised setting where the target's walking direction is employed as a proxy in lieu of head orientation. Experiments confirm that FEGA-MTL significantly outperforms competing single-task and multi-task learning methods in multi-view settings.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2015.2477843