Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation

Many aphids display a remarkably complex life cycle of host alternation, in which cyclical parthenogenesis is combined with the obligate use of two unrelated host plants. We used mitochondrial ribosomal DNA (partial 12S and 16S) sequences to reconstruct the phylogeny of aphids, to determine how many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological journal of the Linnean Society 2000-12, Vol.71 (4), p.689-717
Hauptverfasser: VON DOHLEN, CAROL D, MORAN, NANCY A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many aphids display a remarkably complex life cycle of host alternation, in which cyclical parthenogenesis is combined with the obligate use of two unrelated host plants. We used mitochondrial ribosomal DNA (partial 12S and 16S) sequences to reconstruct the phylogeny of aphids, to determine how many origins of host alternation and correlated major host-plant shifts have occurred. Our results agreed with previous morphological studies in that species clustered with good support at the level of tribes. There was little well-supported phylogenetic structure at levels deeper than tribes, however, except for the monophyly of two subfamilies, Aphidinae and Lachninae. We argue that aphids experienced a rapid radiation at the tribal level, after host shifting from gymnosperms to angiosperms. A rapid radiation is consistent with aphid fossils, which record the presence of few subfamilies in the late Cretaceous, but most extant tribes by the early Tertiary. Plant fossils also record host plants of aphid tribes diversifying during this time. A hypothesized mechanism by which host alternation has evolved (fundatrix specialization), coupled with the rapid radiation, implies that this life cycle may have originated as often as in the ancestor of each tribe that displays it. We also consider, however, an alternative hypothesis of fewer origins. The basal radiation of Aphididae was dated from molecular sequences to have occurred at approximately 80–150 Mya.
ISSN:0024-4066
1095-8312
DOI:10.1006/bijl.2000.0470