Synoptic study of the seasonal variability of dust cases observed by the TOMS satellite over northern Saudi Arabia

The aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) satellite and meteorological parameters from National Center for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis datasets were used to examine seasonal dust cases in northern Saud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology 2016-05, Vol.124 (3-4), p.1099-1117
Hauptverfasser: Awad, Adel M., Mashat, Abdul-Wahab S., Alamoudi, Ahmad O., Assiri, Mazen E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) satellite and meteorological parameters from National Center for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis datasets were used to examine seasonal dust cases in northern Saudi Arabia. Considering all seasons, winter has the fewest dust cases, whereas summer has the most dust cases. Synoptically, surface high-pressure systems in the eastern and western regions are important for the occurrence of dust cases over the northern Arabian Peninsula. When the eastern high pressure prevails, the effects of the Indian low-pressure system on the Arabian Peninsula are weakened or become nonexistent. The extension of the western high-pressure system toward the southeast provides an opportunity for a low-pressure system over Southeast Africa to connect with the Indian low-pressure system, which increases the width of the low-pressure trough and affects the Arabian Peninsula by increasing the amount of dust over the region. At 850 hPa, the weather systems typically rotate clockwise between winter and autumn. In winter, cyclonic systems prevail in the northern region, while anticyclonic systems prevail in the south. The systems are oriented toward the northeast in spring, the west in summer, and the southeast in autumn. Moreover, northern cyclones at 500 hPa shrink as they move northward and the maximum wind speed at 250 hPa decreases from winter to summer. Furthermore, the case study confirms that a change in the relative strength of the pressure systems and a change in the orientation of the isobars (contours) affect the amount of dust over the area. When the orientation of the isobar (contour) lines become strictly north to south or east to west, the amount of dust decreases and vice versa.
ISSN:0177-798X
1434-4483
DOI:10.1007/s00704-015-1486-y