Targeted high-throughput growth hormone 1 gene sequencing reveals high within-breed genetic diversity in South African goats

Summary This study assessed the genetic diversity in the growth hormone 1 gene (GH1) within and between South African goat breeds. Polymerase chain reaction‐targeted gene amplification together with Illumina MiSeq next‐generation sequencing (NGS) was used to generate the full length (2.54 kb) of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal genetics 2016-06, Vol.47 (3), p.382-385
Hauptverfasser: Ncube, K. T., Mdladla, K., Dzomba, E. F., Muchadeyi, F. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary This study assessed the genetic diversity in the growth hormone 1 gene (GH1) within and between South African goat breeds. Polymerase chain reaction‐targeted gene amplification together with Illumina MiSeq next‐generation sequencing (NGS) was used to generate the full length (2.54 kb) of the growth hormone 1 gene and screen for SNPs in the South African Boer (SAB) (n = 17), Tankwa (n = 15) and South African village (n = 35) goat populations. A range of 27–58 SNPs per population were observed. Mutations resulting in amino acid changes were observed at exons 2 and 5. Higher within‐breed diversity of 97.37% was observed within the population category consisting of SA village ecotypes and the Tankwa goats. Highest pairwise FST values ranging from 0.148 to 0.356 were observed between the SAB and both the South African village and Tankwa feral goat populations. Phylogenetic analysis indicated nine genetic clusters, which reflected close relationships between the South African populations and the other international breeds with the exception of the Italian Sarda breeds. Results imply greater potential for within‐population selection programs, particularly with SA village goats.
ISSN:0268-9146
1365-2052
DOI:10.1111/age.12424