Surface-induced spin state locking of the [Fe(H2B(pz)2)2(bipy)] spin crossover complex
Temperature- and coverage-dependent studies of the Au(1 1 1)-supported spin crossover Fe(II) complex (SCO) of the type [Fe(H2B(pz)2)2(bipy)] with a suite of surface-sensitive spectroscopy and microscopy tools show that the substrate inhibits thermally induced transitions of the molecular spin state,...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2016-05, Vol.28 (20), p.206002-206002 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Temperature- and coverage-dependent studies of the Au(1 1 1)-supported spin crossover Fe(II) complex (SCO) of the type [Fe(H2B(pz)2)2(bipy)] with a suite of surface-sensitive spectroscopy and microscopy tools show that the substrate inhibits thermally induced transitions of the molecular spin state, so that both high-spin and low-spin states are preserved far beyond the spin transition temperature of free molecules. Scanning tunneling microscopy confirms that [Fe(H2B(pz)2)2(bipy)] grows as ordered, molecular bilayer islands at sub-monolayer coverage and as disordered film at higher coverage. The temperature dependence of the electronic structure suggest that the SCO films exhibit a mixture of spin states at room temperature, but upon cooling below the spin crossover transition the film spin state is best described as a mix of high-spin and low-spin state molecules of a ratio that is constant. This locking of the spin state is most likely the result of a substrate-induced conformational change of the interfacial molecules, but it is estimated that also the intra-atomic electron-electron Coulomb correlation energy, or Hubbard correlation energy U, could be an additional contributing factor. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/28/20/206002 |