Regulation of the Versican Promoter by the β-Catenin-T-cell Factor Complex in Vascular Smooth Muscle Cells
The proteoglycan versican is pro-atherogenic and central to vascular injury and repair events. We identified the signaling pathways and promoter elements involved in regulation of versican expression in vascular smooth muscle cells. Phosphatidylinositol 3-kinase inhibitor, LY294002, significantly de...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2005-04, Vol.280 (13), p.13019-13028 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The proteoglycan versican is pro-atherogenic and central to vascular injury and repair events. We identified the signaling pathways and promoter elements involved in regulation of versican expression in vascular smooth muscle cells. Phosphatidylinositol 3-kinase inhibitor, LY294002, significantly decreased versican-luciferase (Luc) promoter activity and endogenous mRNA levels. We further examined the roles of protein kinase B and glycogen synthase kinase (GSK)-3β, downstream effectors of phosphatidylinositol 3-kinase, in the regulation of versican transcription. Co-transfection of dominant negative and constitutively active protein kinase B constructs with a versican-Luc construct decreased and increased promoter activity, respectively. Inhibition of GSK-3β activity by LiCl augmented accumulation of β-catenin and caused induction of versican-Luc activity as well as versican mRNA levels. β-Catenin has no DNA binding domain, therefore it cannot directly induce transcription of the versican promoter. Software analysis of the versican promoter revealed two potential binding sites for T-cell factors (TCFs), proteins that confer transcriptional activation of β-catenin. Electrophoretic mobility shift and supershift assays revealed specific binding of human TCF-4 and β-catenin to oligonucleotides corresponding to a potential TCF binding site in the versican promoter. In addition to binding assays, we directly assessed the dependence of versican promoter activity on TCF binding sites. Site-directed mutagenesis of the TCF site located -492 bp relative to the transcription start site markedly diminished versican-Luc activity. Co-transfection of TCF-4 with versican-Luc did not increase promoter activity, but addition of β-catenin and TCF-4 significantly stimulated basal versican promoter activity. Our findings suggest that versican transcription is predominantly mediated by the GSK-3β pathway via the β-catenin-TCF transcription factor complex in smooth muscle cells, wherein such regulation contributes to the normal or aberrant formation of provisional matrix in vascular injury and repair events. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M411766200 |