A fluorescent sensor for Zn(2+) and NO2(-) based on the rational control of C[double bond, length as m-dash]N isomerization
A new strategy for the ultrasensitive sensing of cations and anions based on the control of C[double bond, length as m-dash]N isomerization has been developed. Imine-derived ligand is non-fluorescent due to the C[double bond, length as m-dash]N isomerization process, whereas its ternary complex with...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2016-05, Vol.14 (18), p.4260-4266 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new strategy for the ultrasensitive sensing of cations and anions based on the control of C[double bond, length as m-dash]N isomerization has been developed. Imine-derived ligand is non-fluorescent due to the C[double bond, length as m-dash]N isomerization process, whereas its ternary complex with ZnCl2 is moderately fluorescent because of the partial inhibition of C[double bond, length as m-dash]N isomerization. Such a ternary complex can give a remarkable fluorescence increase when it interacts with nitrite because of the much more efficient suppression of C[double bond, length as m-dash]N isomerization. This modulation process of C[double bond, length as m-dash]N isomerization can thus be used for the highly selective detection of Zn(2+) and NO2(-) in an aqueous solution. |
---|---|
ISSN: | 1477-0539 |
DOI: | 10.1039/c6ob00476h |