High-Performance, Solution-Processed, Embedded Multiscale Metallic Transparent Conductors

High-performance multiscale metallic transparent conductors (TCs) are demonstrated by incorporating Ag nanowire (NW) networks into microscale Ag grid structures. Highly conductive Ag grids are fabricated via direct imprinting of an Ag ion ink using a reservoir-assisted mold. In this mold, a macrosca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-05, Vol.8 (17), p.10937-10945
Hauptverfasser: Oh, Yong Suk, Lee, Hyunwoo, Choi, Dong Yun, Lee, Sung-Uk, Kim, Hojin, Yoo, Seunghyup, Park, Inkyu, Sung, Hyung Jin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10945
container_issue 17
container_start_page 10937
container_title ACS applied materials & interfaces
container_volume 8
creator Oh, Yong Suk
Lee, Hyunwoo
Choi, Dong Yun
Lee, Sung-Uk
Kim, Hojin
Yoo, Seunghyup
Park, Inkyu
Sung, Hyung Jin
description High-performance multiscale metallic transparent conductors (TCs) are demonstrated by incorporating Ag nanowire (NW) networks into microscale Ag grid structures. Highly conductive Ag grids are fabricated via direct imprinting of an Ag ion ink using a reservoir-assisted mold. In this mold, a macroscale cavity, called the “reservoir”, is designed to connect to a grid-patterned cavity. The reservoir has a large cavity volume, which reduces unwanted residual layers within the grid spacings by introducing a thinner liquid film. The reservoir undergoes a large volume reduction during mold deformation, which improves ink filling within the grid-patterned cavity through deformation-induced ink injection. The multiscale metallic TCs show a sheet resistance (R s) of
doi_str_mv 10.1021/acsami.6b02333
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787085817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787085817</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-e773abb06b9c0dd018a6c2c21225cc4ab39cf2555b9ebb1a9a1fe98e49407f0d3</originalsourceid><addsrcrecordid>eNp1kLtOw0AQRVcIREKgpUQuEYrDvvzYEkWBICUiEqGgsvYxBkdrb9i1C_4eI4d0VDPFuVczB6FrgmcEU3IvdZB1NUsVpoyxEzQmgvM4pwk9Pe6cj9BFCDuMU0Zxco5GNMMZFzgfo_dl9fEZb8CXztey0TCNXp3t2so18cY7DSGAmUaLWoExYKJ1Z9sqaGkhWkMrra10tPWyCXvpoWmjuWtMp1vnwyU6K6UNcHWYE_T2uNjOl_Hq5el5_rCKJWO4jSHLmFQKp0pobAwmuUw11ZRQmmjNpWJClzRJEiVAKSKFJCWIHLjgOCuxYRN0O_TuvfvqILRF3R8I1soGXBcKkuUZzpOcZD06G1DtXQgeymLvq1r674Lg4ldnMegsDjr7wM2hu1M1mCP-568H7gagDxY71_mmf_W_th9zLoDG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787085817</pqid></control><display><type>article</type><title>High-Performance, Solution-Processed, Embedded Multiscale Metallic Transparent Conductors</title><source>American Chemical Society Journals</source><creator>Oh, Yong Suk ; Lee, Hyunwoo ; Choi, Dong Yun ; Lee, Sung-Uk ; Kim, Hojin ; Yoo, Seunghyup ; Park, Inkyu ; Sung, Hyung Jin</creator><creatorcontrib>Oh, Yong Suk ; Lee, Hyunwoo ; Choi, Dong Yun ; Lee, Sung-Uk ; Kim, Hojin ; Yoo, Seunghyup ; Park, Inkyu ; Sung, Hyung Jin</creatorcontrib><description>High-performance multiscale metallic transparent conductors (TCs) are demonstrated by incorporating Ag nanowire (NW) networks into microscale Ag grid structures. Highly conductive Ag grids are fabricated via direct imprinting of an Ag ion ink using a reservoir-assisted mold. In this mold, a macroscale cavity, called the “reservoir”, is designed to connect to a grid-patterned cavity. The reservoir has a large cavity volume, which reduces unwanted residual layers within the grid spacings by introducing a thinner liquid film. The reservoir undergoes a large volume reduction during mold deformation, which improves ink filling within the grid-patterned cavity through deformation-induced ink injection. The multiscale metallic TCs show a sheet resistance (R s) of &lt;1.5 Ω/sq and a transmittance (T) of 86% at 550 nm, superior to the corresponding values of Ag NW networks (R s of 15.6 Ω/sq at a similar T). We estimate the R s–T performances of the Ag grids using geometrical calculations and demonstrate that their integration can enhance the opto-electrical properties of the Ag NW networks. Multiscale metallic TCs are successfully transferred and embedded into a transparent, flexible, and UV-curable polymer matrix. The embedded multiscale metallic TCs show reasonable electromechanical and chemical stability. The utility of these TCs is demonstrated by fabricating flexible organic solar cells.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b02333</identifier><identifier>PMID: 27074908</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-05, Vol.8 (17), p.10937-10945</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-e773abb06b9c0dd018a6c2c21225cc4ab39cf2555b9ebb1a9a1fe98e49407f0d3</citedby><cites>FETCH-LOGICAL-a330t-e773abb06b9c0dd018a6c2c21225cc4ab39cf2555b9ebb1a9a1fe98e49407f0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b02333$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b02333$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27074908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Yong Suk</creatorcontrib><creatorcontrib>Lee, Hyunwoo</creatorcontrib><creatorcontrib>Choi, Dong Yun</creatorcontrib><creatorcontrib>Lee, Sung-Uk</creatorcontrib><creatorcontrib>Kim, Hojin</creatorcontrib><creatorcontrib>Yoo, Seunghyup</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><creatorcontrib>Sung, Hyung Jin</creatorcontrib><title>High-Performance, Solution-Processed, Embedded Multiscale Metallic Transparent Conductors</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>High-performance multiscale metallic transparent conductors (TCs) are demonstrated by incorporating Ag nanowire (NW) networks into microscale Ag grid structures. Highly conductive Ag grids are fabricated via direct imprinting of an Ag ion ink using a reservoir-assisted mold. In this mold, a macroscale cavity, called the “reservoir”, is designed to connect to a grid-patterned cavity. The reservoir has a large cavity volume, which reduces unwanted residual layers within the grid spacings by introducing a thinner liquid film. The reservoir undergoes a large volume reduction during mold deformation, which improves ink filling within the grid-patterned cavity through deformation-induced ink injection. The multiscale metallic TCs show a sheet resistance (R s) of &lt;1.5 Ω/sq and a transmittance (T) of 86% at 550 nm, superior to the corresponding values of Ag NW networks (R s of 15.6 Ω/sq at a similar T). We estimate the R s–T performances of the Ag grids using geometrical calculations and demonstrate that their integration can enhance the opto-electrical properties of the Ag NW networks. Multiscale metallic TCs are successfully transferred and embedded into a transparent, flexible, and UV-curable polymer matrix. The embedded multiscale metallic TCs show reasonable electromechanical and chemical stability. The utility of these TCs is demonstrated by fabricating flexible organic solar cells.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOw0AQRVcIREKgpUQuEYrDvvzYEkWBICUiEqGgsvYxBkdrb9i1C_4eI4d0VDPFuVczB6FrgmcEU3IvdZB1NUsVpoyxEzQmgvM4pwk9Pe6cj9BFCDuMU0Zxco5GNMMZFzgfo_dl9fEZb8CXztey0TCNXp3t2so18cY7DSGAmUaLWoExYKJ1Z9sqaGkhWkMrra10tPWyCXvpoWmjuWtMp1vnwyU6K6UNcHWYE_T2uNjOl_Hq5el5_rCKJWO4jSHLmFQKp0pobAwmuUw11ZRQmmjNpWJClzRJEiVAKSKFJCWIHLjgOCuxYRN0O_TuvfvqILRF3R8I1soGXBcKkuUZzpOcZD06G1DtXQgeymLvq1r674Lg4ldnMegsDjr7wM2hu1M1mCP-568H7gagDxY71_mmf_W_th9zLoDG</recordid><startdate>20160504</startdate><enddate>20160504</enddate><creator>Oh, Yong Suk</creator><creator>Lee, Hyunwoo</creator><creator>Choi, Dong Yun</creator><creator>Lee, Sung-Uk</creator><creator>Kim, Hojin</creator><creator>Yoo, Seunghyup</creator><creator>Park, Inkyu</creator><creator>Sung, Hyung Jin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160504</creationdate><title>High-Performance, Solution-Processed, Embedded Multiscale Metallic Transparent Conductors</title><author>Oh, Yong Suk ; Lee, Hyunwoo ; Choi, Dong Yun ; Lee, Sung-Uk ; Kim, Hojin ; Yoo, Seunghyup ; Park, Inkyu ; Sung, Hyung Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-e773abb06b9c0dd018a6c2c21225cc4ab39cf2555b9ebb1a9a1fe98e49407f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Yong Suk</creatorcontrib><creatorcontrib>Lee, Hyunwoo</creatorcontrib><creatorcontrib>Choi, Dong Yun</creatorcontrib><creatorcontrib>Lee, Sung-Uk</creatorcontrib><creatorcontrib>Kim, Hojin</creatorcontrib><creatorcontrib>Yoo, Seunghyup</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><creatorcontrib>Sung, Hyung Jin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Yong Suk</au><au>Lee, Hyunwoo</au><au>Choi, Dong Yun</au><au>Lee, Sung-Uk</au><au>Kim, Hojin</au><au>Yoo, Seunghyup</au><au>Park, Inkyu</au><au>Sung, Hyung Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance, Solution-Processed, Embedded Multiscale Metallic Transparent Conductors</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-05-04</date><risdate>2016</risdate><volume>8</volume><issue>17</issue><spage>10937</spage><epage>10945</epage><pages>10937-10945</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>High-performance multiscale metallic transparent conductors (TCs) are demonstrated by incorporating Ag nanowire (NW) networks into microscale Ag grid structures. Highly conductive Ag grids are fabricated via direct imprinting of an Ag ion ink using a reservoir-assisted mold. In this mold, a macroscale cavity, called the “reservoir”, is designed to connect to a grid-patterned cavity. The reservoir has a large cavity volume, which reduces unwanted residual layers within the grid spacings by introducing a thinner liquid film. The reservoir undergoes a large volume reduction during mold deformation, which improves ink filling within the grid-patterned cavity through deformation-induced ink injection. The multiscale metallic TCs show a sheet resistance (R s) of &lt;1.5 Ω/sq and a transmittance (T) of 86% at 550 nm, superior to the corresponding values of Ag NW networks (R s of 15.6 Ω/sq at a similar T). We estimate the R s–T performances of the Ag grids using geometrical calculations and demonstrate that their integration can enhance the opto-electrical properties of the Ag NW networks. Multiscale metallic TCs are successfully transferred and embedded into a transparent, flexible, and UV-curable polymer matrix. The embedded multiscale metallic TCs show reasonable electromechanical and chemical stability. The utility of these TCs is demonstrated by fabricating flexible organic solar cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27074908</pmid><doi>10.1021/acsami.6b02333</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-05, Vol.8 (17), p.10937-10945
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1787085817
source American Chemical Society Journals
title High-Performance, Solution-Processed, Embedded Multiscale Metallic Transparent Conductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance,%20Solution-Processed,%20Embedded%20Multiscale%20Metallic%20Transparent%20Conductors&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Oh,%20Yong%20Suk&rft.date=2016-05-04&rft.volume=8&rft.issue=17&rft.spage=10937&rft.epage=10945&rft.pages=10937-10945&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b02333&rft_dat=%3Cproquest_cross%3E1787085817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787085817&rft_id=info:pmid/27074908&rfr_iscdi=true