Effects of low-dose, low-penetration electron beam irradiation of chilled beef carcass surface cuts on Escherichia coli O157:H7 and meat quality

Low-dose, low-penetration electron beam (E-beam) irradiation was evaluated for potential use as an antimicrobial intervention on beef carcasses during processing. The objectives of this study were (i) to assess the efficacy of E-beam irradiation to reduce concentrations of Escherichia coli O157:H7 o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food protection 2005-04, Vol.68 (4), p.666-672
Hauptverfasser: Arthur, T.M, Wheeler, T.L, Shackelford, S.D, Bosilevac, J.M, Nou, X, Koohmaraie, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-dose, low-penetration electron beam (E-beam) irradiation was evaluated for potential use as an antimicrobial intervention on beef carcasses during processing. The objectives of this study were (i) to assess the efficacy of E-beam irradiation to reduce concentrations of Escherichia coli O157:H7 on a large beef surface and (ii) to evaluate the effect of the treatment on the sensory properties of the product. A 1-kGy dose of E-beam radiation reduced E. coli O157:H7 inoculated onto sections of cutaneous trunci at least 4 log CFU/cm2. In assessing organoleptic impact, flank steak was used as the model muscle. Flank steaks with various levels of penetration by radiation (5, 10, 25, 50, and 75%) were evaluated. None of the flank steak sensory attributes were affected (P > 0.05) by any penetration treatment. Ground beef formulations consisting of 100, 50, 25, 10, 5, and 0% surface-irradiated beef were tested. A trained sensory panel did not detect any difference between the control (0%) and either the 5 or 10% treatments. These results suggest that if chilled carcasses were subjected to low-dose E-beam irradiation, aroma and flavor of ground beef would not be impacted. The data presented here indicate that low-dose, low-penetration E-beam irradiation has potential use as an antimicrobial intervention on beef carcasses during processing and minimally impacts the organoleptic qualities of the treated beef products.
ISSN:0362-028X
1944-9097
DOI:10.4315/0362-028X-68.4.666