Effects of low-dose, low-penetration electron beam irradiation of chilled beef carcass surface cuts on Escherichia coli O157:H7 and meat quality
Low-dose, low-penetration electron beam (E-beam) irradiation was evaluated for potential use as an antimicrobial intervention on beef carcasses during processing. The objectives of this study were (i) to assess the efficacy of E-beam irradiation to reduce concentrations of Escherichia coli O157:H7 o...
Gespeichert in:
Veröffentlicht in: | Journal of food protection 2005-04, Vol.68 (4), p.666-672 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low-dose, low-penetration electron beam (E-beam) irradiation was evaluated for potential use as an antimicrobial intervention on beef carcasses during processing. The objectives of this study were (i) to assess the efficacy of E-beam irradiation to reduce concentrations of Escherichia coli O157:H7 on a large beef surface and (ii) to evaluate the effect of the treatment on the sensory properties of the product. A 1-kGy dose of E-beam radiation reduced E. coli O157:H7 inoculated onto sections of cutaneous trunci at least 4 log CFU/cm2. In assessing organoleptic impact, flank steak was used as the model muscle. Flank steaks with various levels of penetration by radiation (5, 10, 25, 50, and 75%) were evaluated. None of the flank steak sensory attributes were affected (P > 0.05) by any penetration treatment. Ground beef formulations consisting of 100, 50, 25, 10, 5, and 0% surface-irradiated beef were tested. A trained sensory panel did not detect any difference between the control (0%) and either the 5 or 10% treatments. These results suggest that if chilled carcasses were subjected to low-dose E-beam irradiation, aroma and flavor of ground beef would not be impacted. The data presented here indicate that low-dose, low-penetration E-beam irradiation has potential use as an antimicrobial intervention on beef carcasses during processing and minimally impacts the organoleptic qualities of the treated beef products. |
---|---|
ISSN: | 0362-028X 1944-9097 |
DOI: | 10.4315/0362-028X-68.4.666 |