Fiber tracts of the dorsal language stream in the human brain

OBJECT The aim of this study was to examine the arcuate (AF) and superior longitudinal fasciculi (SLF), which together form the dorsal language stream, using fiber dissection and diffusion imaging techniques in the human brain. METHODS Twenty-five formalin-fixed brains (50 hemispheres) and 3 adult c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurosurgery 2016-05, Vol.124 (5), p.1396-1405
Hauptverfasser: Yagmurlu, Kaan, Middlebrooks, Erik H, Tanriover, Necmettin, Rhoton, Jr, Albert L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECT The aim of this study was to examine the arcuate (AF) and superior longitudinal fasciculi (SLF), which together form the dorsal language stream, using fiber dissection and diffusion imaging techniques in the human brain. METHODS Twenty-five formalin-fixed brains (50 hemispheres) and 3 adult cadaveric heads, prepared according to the Klingler method, were examined by the fiber dissection technique. The authors' findings were supported with MR tractography provided by the Human Connectome Project, WU-Minn Consortium. The frequencies of gyral distributions were calculated in segments of the AF and SLF in the cadaveric specimens. RESULTS The AF has ventral and dorsal segments, and the SLF has 3 segments: SLF I (dorsal pathway), II (middle pathway), and III (ventral pathway). The AF ventral segment connects the middle (88%; all percentages represent the area of the named structure that is connected to the tract) and posterior (100%) parts of the superior temporal gyri and the middle part (92%) of the middle temporal gyrus to the posterior part of the inferior frontal gyrus (96% in pars opercularis, 40% in pars triangularis) and the ventral premotor cortex (84%) by passing deep to the lower part of the supramarginal gyrus (100%). The AF dorsal segment connects the posterior part of the middle (100%) and inferior temporal gyri (76%) to the posterior part of the inferior frontal gyrus (96% in pars opercularis), ventral premotor cortex (72%), and posterior part of the middle frontal gyrus (56%) by passing deep to the lower part of the angular gyrus (100%). CONCLUSIONS This study depicts the distinct subdivision of the AF and SLF, based on cadaveric fiber dissection and diffusion imaging techniques, to clarify the complicated language processing pathways.
ISSN:0022-3085
1933-0693
DOI:10.3171/2015.5.jns15455