On the Lexicographic Centre of Multiple Objective Optimization
We study the lexicographic centre of multiple objective optimization. Analysing the lexicographic-order properties yields the result that, if the multiple objective programming’s lexicographic centre is not empty, then it is a subset of all efficient solutions. It exists if the image set of multiple...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2016-02, Vol.168 (2), p.600-614 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the
lexicographic centre
of multiple objective optimization. Analysing the lexicographic-order properties yields the result that, if the multiple objective programming’s lexicographic centre is not empty, then it is a subset of all efficient solutions. It exists if the image set of multiple objective programming is bounded below and closed. The multiple objective linear programming’s lexicographic centre is nonempty if and only if there exists an efficient solution to the multiple objective linear programming. We propose a polynomial-time algorithm to determine whether there is an efficient solution to multiple objective linear programming, and we solve the multiple objective linear programming’s lexicographic centre by calculating at most the same number of dual linear programs as the number of objective functions and a system of linear inequalities. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-015-0810-0 |