Modelling water-table depth in a primary aquifer to identify potential wetland hydrogeomorphic settings on the northern Maputaland Coastal Plain, KwaZulu-Natal, South Africa

The primary aquifer on the Maputaland Coastal Plain in northern KwaZulu-Natal, South Africa, is the principal source of water for rivers, lakes and most of the wetlands in dry periods, and is recharged by these systems in wet periods. Modelling hydrologic conditions that control regional water-table...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrogeology journal 2016-02, Vol.24 (1), p.249-265
Hauptverfasser: Kelbe, Bruce E, Grundling, Althea T, Price, Jonathan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary aquifer on the Maputaland Coastal Plain in northern KwaZulu-Natal, South Africa, is the principal source of water for rivers, lakes and most of the wetlands in dry periods, and is recharged by these systems in wet periods. Modelling hydrologic conditions that control regional water-table depth can provide insight into the spatial patterns of wetland occurrence and of the persistence of wet conditions that control their character. This project used a groundwater model (MODFLOW) to simulate 10-year water-table fluctuations on the Maputaland Coastal Plain from January 2000 to December 2010, to contrast the conditions between wet and dry years. Remote sensing imagery was used to map “permanent” and “temporary” wetlands in dry and wet years to evaluate the effectiveness of identifying the suitable conditions for their formation using numerical modelling techniques. The results confirm that topography plays an important role on a sub-regional and local level to support wetland formation. The wetlands’ extent and distribution are directly associated with the spatial and temporal variations of the water table in relation to the topographical profile. Groundwater discharge zones in the lowland (1–50 masl) areas support more permanent wetlands with dominantly peat or high organic soil substrates, including swamp forest and most of the permanent open water areas. Most temporary wetlands associated with low-percentage clay occurrence are through-flow low-lying interdune systems characterised by regional fluctuation of the water table, while other temporary wetlands are perched or partially perched. The latter requires a more sophisticated saturated-unsaturated modelling approach.
ISSN:1431-2174
1435-0157
DOI:10.1007/s10040-015-1350-2