Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts
Structural and temporal inhomogeneities can have a marked influence on the performance of inorganic and biocatalytic systems alike. While these subtle variations are hardly ever accessible through bulk or ensemble averaged activity screening, insights into the molecular mechanisms underlying these d...
Gespeichert in:
Veröffentlicht in: | Chemical Society reviews 2014-01, Vol.43 (4), p.99-16 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structural and temporal inhomogeneities can have a marked influence on the performance of inorganic and biocatalytic systems alike. While these subtle variations are hardly ever accessible through bulk or ensemble averaged activity screening, insights into the molecular mechanisms underlying these diverse phenomena are absolutely critical for the development of optimized or novel catalytic systems and processes. Fortunately, state-of-the-art fluorescence microscopy methods have allowed experimental access to this intriguing world at the nanoscale. In this
tutorial review
we will first provide a broad overview of key concepts and developments in the application of single molecule fluorescence spectroscopy to (bio)catalysis research. In the second part topics specific to both bio and heterogeneous catalysis will be reviewed in more detail.
Single molecule fluorescence microscopy allows experimental access to the world of catalysts at the nanoscale, providing unique insights. |
---|---|
ISSN: | 0306-0012 1460-4744 |
DOI: | 10.1039/c3cs60245a |