Dynamic Model and Control of a New Underwater Three-Degree-of-Freedom Tidal Energy Converter

There is currently a growing interest in developing devices that can be used to exploit energy from oceans. In the recent past, the search for oil and gas at ever-greater depths has led to the evolution of devices with which these resources are extracted. These devices range from those that simply r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-15
Hauptverfasser: Morales, Rafael, Portilla, Marina P., López, Amable, Somolinos, José A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is currently a growing interest in developing devices that can be used to exploit energy from oceans. In the recent past, the search for oil and gas at ever-greater depths has led to the evolution of devices with which these resources are extracted. These devices range from those that simply rest on the seabed to those that are fully floating and anchored to it. This trend can be considered as the basis needed to understand the future evolution of devices for harnessing depth renewable resources. This paper presents a simple dynamic modeling and a nonlinear multivariable control model-based system for a new three-degree-of-freedom underwater generator with which energy from depth marine currents is harnessed when reference trajectory tracking for the emersion maneuvers needed to carry out maintenance tasks is performed. The goodness of both the model and the proposed controller has been demonstrated through the development of various simulations in the MATLAB-Simulink environment. Additionally, the validation of the control algorithms was carried out by using the dynamic model offered by the simulation environment Orcina OrcaFlex (software for the dynamic analysis for offshore marine systems) through the MATLAB-OrcaFlex interface.
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/948048