Weak ergodicity breaking and aging of chaotic transport in Hamiltonian systems

Momentum diffusion is a widespread phenomenon in generic Hamiltonian systems. We show for the prototypical standard map that this implies weak ergodicity breaking for the superdiffusive transport in coordinate direction with an averaging-dependent quadratic and cubic increase of the mean-squared dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-10, Vol.113 (18), p.184101-184101, Article 184101
Hauptverfasser: Albers, Tony, Radons, Günter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Momentum diffusion is a widespread phenomenon in generic Hamiltonian systems. We show for the prototypical standard map that this implies weak ergodicity breaking for the superdiffusive transport in coordinate direction with an averaging-dependent quadratic and cubic increase of the mean-squared displacement (MSD), respectively. This is explained via integrated Brownian motion, for which we derive aging time dependent expressions for the ensemble-averaged MSD, the distribution of time-averaged MSDs, and the ergodicity breaking parameter. Generalizations to other systems showing momentum diffusion are pointed out.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.113.184101