Weak ergodicity breaking and aging of chaotic transport in Hamiltonian systems
Momentum diffusion is a widespread phenomenon in generic Hamiltonian systems. We show for the prototypical standard map that this implies weak ergodicity breaking for the superdiffusive transport in coordinate direction with an averaging-dependent quadratic and cubic increase of the mean-squared dis...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-10, Vol.113 (18), p.184101-184101, Article 184101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Momentum diffusion is a widespread phenomenon in generic Hamiltonian systems. We show for the prototypical standard map that this implies weak ergodicity breaking for the superdiffusive transport in coordinate direction with an averaging-dependent quadratic and cubic increase of the mean-squared displacement (MSD), respectively. This is explained via integrated Brownian motion, for which we derive aging time dependent expressions for the ensemble-averaged MSD, the distribution of time-averaged MSDs, and the ergodicity breaking parameter. Generalizations to other systems showing momentum diffusion are pointed out. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.113.184101 |