Probing the microscopic structure of the stripe phase at filling factor 5/2
A prominent manifestation of the competition between repulsive and attractive interactions acting on different length scales is the self-organized ordering of electrons in a stripelike fashion in material systems such as high-T_{c} superconductors. Such stripe phases are also believed to occur in tw...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-08, Vol.113 (7), p.076803-076803, Article 076803 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A prominent manifestation of the competition between repulsive and attractive interactions acting on different length scales is the self-organized ordering of electrons in a stripelike fashion in material systems such as high-T_{c} superconductors. Such stripe phases are also believed to occur in two-dimensional electron systems exposed to a perpendicular magnetic field, where they cause a strong anisotropy in transport. The addition of an in-plane field even enables us to expel fractional quantum Hall states, to the benefit of such anisotropic phases. An important example represents the disappearance of the 5/2 fractional state. Here, we report the use of nuclear magnetic resonance spectroscopy to probe the electron density distribution of this emergent anisotropic phase. A surprisingly strong spatial density modulation was found. The observed behavior suggests a stripe pattern with a period of 2.6±0.6 magnetic lengths and an amplitude as large as 20% relative to the total density. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.113.076803 |