Picosecond dynamic heterogeneity, hopping, and Johari-Goldstein relaxation in glass-forming liquids
We show that incoherent quasielastic neutron scattering from molecular liquids reveals a two-state dynamic heterogeneity on a 1 ps time scale, where molecules are either highly confined or are free to undergo relatively large excursions. Data ranging from deep in the glassy state to well above the m...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-09, Vol.113 (11), p.117801-117801, Article 117801 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that incoherent quasielastic neutron scattering from molecular liquids reveals a two-state dynamic heterogeneity on a 1 ps time scale, where molecules are either highly confined or are free to undergo relatively large excursions. Data ranging from deep in the glassy state to well above the melting point allows us to observe temperature-dependent population levels and exchange between these two states. A simple physical picture emerges from this data, combined with published work, that provides a mechanism for hopping and for the Johari-Goldstein (β_{JG}) relaxation, and allows us to accurately calculate the diffusion coefficient, D_{T}, and characteristic times for α, and β_{JG} relaxations from ps time scale neutron data. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.113.117801 |