Energy-efficient synonym data detection and consistency for virtual cache
The cache memory consumes a large proportion of the energy used by a processor. In the on-chip cache, the translation lookaside buffer (TLB) accounts for 20–50% of energy consumption of the on-chip cache. To reduce energy consumption caused by TLB accesses, a virtual cache can be accessed by virtual...
Gespeichert in:
Veröffentlicht in: | Microprocessors and microsystems 2016-02, Vol.40, p.27-44 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cache memory consumes a large proportion of the energy used by a processor. In the on-chip cache, the translation lookaside buffer (TLB) accounts for 20–50% of energy consumption of the on-chip cache. To reduce energy consumption caused by TLB accesses, a virtual cache can be accessed by virtual addresses which are issued by a processor directly. However, a virtual cache may result in the synonym problem. In this paper, we propose low-cost synonym detection hardware and a synonym data coherence mechanism. These reduce the energy consumption incurred by TLB lookups, and maintain synonym data consistency in the virtual cache. The proposed synonym detection hardware efficiently reduces the number of blocks that must be looked up in a virtual cache for saving energy. In addition, the proposed synonym data coherence mechanism also reduces the number of invalidated blocks in the virtual cache to prevent the destruction of cache locality. The simulation results show that our proposed energy-aware virtual cache consumes 51%, 27%, and 20% less energy than the traditional physical cache, traditional virtual cache, and synonym lookaside buffer (SLB), respectively. In addition, our proposed design shows almost the same static energy consumption as SLB, and reduces static energy consumption by about 20% compared with the traditional physical cache and virtual cache. |
---|---|
ISSN: | 0141-9331 1872-9436 |
DOI: | 10.1016/j.micpro.2015.11.004 |