Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles

MnFe204 nanoparticles (NPs) with various sizes and tight size-distribution were synthesized by a chemical solution- phase method. The as-synthesized NPs were coated with a silica shell of 4 nm-5 nm in thickness, enabling the water- solubility and biocompatibility of the NPs. The MnFe204 NPs with a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2015-06, Vol.24 (6), p.556-559
1. Verfasser: 邱庆伟 徐晓文 何芒 张洪旺
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MnFe204 nanoparticles (NPs) with various sizes and tight size-distribution were synthesized by a chemical solution- phase method. The as-synthesized NPs were coated with a silica shell of 4 nm-5 nm in thickness, enabling the water- solubility and biocompatibility of the NPs. The MnFe204 NPs with a size of less than 18 nm exhibit superparamagnetic behavior with high saturated magnetization. The capacity of the heat production was enhanced by increasing particle sizes and radio frequency (RF) field strengths. MnFe204/SiO2 NPs with 18-nm magnetic cores showed the highest heat- generation ability under an RF field. These MnFe204/SiO2 NPs have great potentiality to cancer treatments, controlled drug releases, and remote controls of single cell functions.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/6/067503