Oceanographic lidar profiles compared with estimates from in situ optical measurements
Oceanographic lidar profiles measured in an aerial survey were compared with in situ measurements of water optical properties made from a surface vessel. Experimental data were collected over a two-week period in May 2010 in East Sound, Washington. Measured absorption and backscatter coefficients we...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2013-02, Vol.52 (4), p.786-794 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oceanographic lidar profiles measured in an aerial survey were compared with in situ measurements of water optical properties made from a surface vessel. Experimental data were collected over a two-week period in May 2010 in East Sound, Washington. Measured absorption and backscatter coefficients were used with the volume-scattering function in a quasi-single-scattering model to simulate an idealized lidar return, and this was convolved with the measured instrument response to accurately reproduce the measured temporal behavior. Linear depth-dependent depolarization from the water column and localized depolarization from scattering layers are varied to fine tune the simulated lidar return. Sixty in situ measurements of optical properties were correlated with nearly collocated and coincident lidar profiles; our model yielded good matches (±3 dB to a depth of 12 m) between simulated and measured lidar profiles for both uniform and stratified waters. Measured attenuation was slightly higher (5%) than diffuse attenuation for the copolarized channel and slightly lower (8%) for the cross-polarized channel. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.52.000786 |