Quantification of Gaussian quantum steering

Einstein-Podolsky-Rosen steering incarnates a useful nonclassical correlation which sits between entanglement and Bell nonlocality. While a number of qualitative steering criteria exist, very little has been achieved for what concerns quantifying steerability. We introduce a computable measure of st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-02, Vol.114 (6), p.060403-060403, Article 060403
Hauptverfasser: Kogias, Ioannis, Lee, Antony R, Ragy, Sammy, Adesso, Gerardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Einstein-Podolsky-Rosen steering incarnates a useful nonclassical correlation which sits between entanglement and Bell nonlocality. While a number of qualitative steering criteria exist, very little has been achieved for what concerns quantifying steerability. We introduce a computable measure of steering for arbitrary bipartite Gaussian states of continuous variable systems. For two-mode Gaussian states, the measure reduces to a form of coherent information, which is proven never to exceed entanglement, and to reduce to it on pure states. We provide an operational connection between our measure and the key rate in one-sided device-independent quantum key distribution. We further prove that Peres' conjecture holds in its stronger form within the fully Gaussian regime: namely, steering bound entangled Gaussian states by Gaussian measurements is impossible.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.114.060403